ORIGINAL ARTICLES

The Spectrum of Gastrointestinal Manifestations in Children and Adolescents with Lyme Disease
Martin D. Fried, MD; Matthew Abel, MD; Dorothy Pietrucha, MD; Yen-Hong Kuo, MS; and Aswine Bal, MD

Repeated Antibiotic Treatment in Chronic Lyme Disease
Brian A. Fallon, MD; Felice Tager, PhD; Lesley Fein, MD;
Kenneth Liegner, MD; John Keilp, PhD; Nicola Weiss, PhD;
and Michael R. Liebowitz, MD

Antiphospholipid Antibody Syndrome and Lyme Disease: A Possible Association
Kevin J. Cross, BS, and Michael A. Patmas, MD, MS, FACP

Rapid Susceptibility Testing of Lyme Disease Spirochetes by Flow Cytometry
Dean A. Jobe, MS; Steven M. Callister, PhD;
Steven D. Lovrich, PhD; and Ronald F. Schell, PhD

Post Lyme Syndrome: Contrasts with Recovered Lyme Patients on Cognitive and Symptom Measures
Lauren B. Krupp, MD; Leigh E. Elkins, PhD;
Patricia K. Coyle, MD; Dean A. Pollina, PhD; and David M. Masur, PhD

Tc-99m HMPAO Brain SPECT Imaging in Chronic Lyme Disease
Jeffrey J. Plutchok, MD; Ronald S. Tikofsky, PhD; Kenneth B. Liegner, MD;
Janice M. Kochevar, FNP-C; Brian A. Fallon, MD; and Ronald L. Van Heertum, MD

Case Report: Lyme Disease and Complex Partial Seizures
Robert C. Bransfield, MD

CITATIONS OF PUBLICATIONS

Citations of Publications on Lyme Disease and Other Spirochetal and Tick-borne Diseases

The Journal of the Lyme Disease Foundation
LETTER TO THE EDITOR
The archy of Triumph? ... 88

ORIGINAL ARTICLES

The Spectrum of Gastrointestinal Manifestations in Children and Adolescents with Lyme Disease .. 89
Martin D. Fried, MD; Matthew Abel, MD;
Dorothy Pietrucha, MD; Yen-Hong Kuo, MS;
and Aswine Bal, MD

Repeated Antibiotic Treatment in Chronic Lyme Disease 94
Brian A. Fallon, MD; Felice Tager, PhD; Lesley Fein, MD;
Kenneth Liegner, MD; John Keilp, PhD; Nicolà Weiss, PhD;
and Michael R. Liebowitz, MD

Antiphospholipid Antibody Syndrome and Lyme Disease: A Possible Association .. 103
Kevin J. Cross, BS, and Michael A. Patmas, MD, MS, FACP

Rapid Susceptibility Testing of Lyme Disease Spirochetes by Flow Cytometry ... 105
Dean A. Jobe, MS; Steven M. Callister, PhD; Steven D. Lovrich, PhD; and Ronald F. Schell, PhD

Post Lyme Syndrome: Contrasts with Recovered Lyme Patients on Cognitive and Symptom Measures 112
Lauren B. Krupp, MD; Leigh E. Elkins, PhD; Patricia K. Coyle, MD;
Dean A. Pollina, PhD; and David M. Masur, PhD

Tc-99m HMPAO Brain SPECT Imaging in Chronic Lyme Disease ... 117
Jeffrey J. Plutchok, MD; Ronald S. Tikofsky, PhD; Kenneth B. Liegner, MD;
Janice M. Kochevar, FNP-C; Brian A. Fallon, MD; and Ronald L. Van Heertum, MD

Case Report: Lyme Disease and Complex Partial Seizures 123
Robert C. Bransfield, MD

Citations of Publications on Lyme Disease and Other Spirochetal and Tick-borne Diseases .. 126
Downloaded from Medline
The Journal of Spirochetal and Tick-borne Diseases (ISSN:1060-0051) (GST#127950468) is published quarterly by SLACK Incorporated, 6900 Grove Road, Thorofare, New Jersey 08086. Dates of publication are: March, June, September, and December, on the third week of the publication month.

Copyright 2000 by Lyme Disease Foundation Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form without written permission by the Executive Director of the Lyme Disease Foundation, One Financial Plaza, Hartford, CT 06103-2810.

The Journal of Spirochetal and Tick-borne Diseases does not hold itself responsible for statements made by any contributors. Statements of opinions expressed in the Journal reflect the views of the author(s) and not the official policy of the Lyme Disease Foundation.

Subscription Rates: Physician: $80.00/yr; Institution: $100.00/yr; Single copies: $25.00. Students, fellows, and residents: $45.00/yr; Foreign: add $20.00 for postage ($10.00 for Canada). To receive student/resident rate, orders must be accompanied by name of affiliated institution, date of term, and signature of program/residency coordinator on institution letterhead. Orders will be billed at single rate until proof of status is received. Back issues can be ordered at a cost of $25.00 per issue.

Change of address notices, including both the old and new addresses of the subscriber, should be sent at least 1 month in advance of effective date. Include old and new addresses and label from recent issue. The publisher cannot accept responsibility for undelivered copies.

Postmaster: Send change of address to: Journal of Spirochetal and Tick-borne Diseases, SLACK Incorporated, 6900 Grove Road, Thorofare, NJ 08086. Third class postage paid at Thorofare, NJ 08086. Advertising: SLACK Incorporated, 6900 Grove Road, Thorofare, New Jersey 08086. Although all advertising material is expected to conform to ethical standards, acceptance does not imply endorsement by the Journal. Back issues can be ordered at a cost of $25.00 per issue. Back issues sold in conjunction with a subscription are on a prorated basis. Requests for orders should be sent to the Journal of Spirochetal and Tick-borne Diseases, SLACK Incorporated, 6900 Grove Road, Thorofare, New Jersey 08086.

Editorial content: Topics relating to understanding disease mechanisms and the application of better diagnostic techniques and treatment strategies for all individuals suffering from spirochetal and tick-borne diseases. Letters to the Editor in the form of correspondence related to material published in the Journal or some aspects of spirochetal and tick-borne diseases may be submitted. Such letters, if related to work previously published in the Journal, will be referred to the author of the original work for a response.

Publisher
For submissions
and subscriptions
SLACK Incorporated
6900 Grove Rd.,
Thorofare, NJ 08086
856-848-1000

Editorial Staff
Executive Editor
Kaye Coraluzzo

Assistant Managing Editor
Patricia Alexander-Smith

Editorial Assistant
Aileen Schneider

Advertising Sales
Director/Advertising
Wayne McCourt

Advertising Sales
Representative
Kelly Wark

Publishing Group
Vice President/Group
Publisher
Richard N. Roash

Publisher
John C. Carter

Editorial Director/Journals
Jennifer A. Kilpatrick

Circulation Manager
Lester J. Robeson, CCCP

Production Director
Christine Malin

Production Coordinator
Joanne Patterson

Business Manager
For correspondence
Karen Vanderhoof-Forschner
Lyme Disease Foundation
One Financial Plaza
Hartford, CT 06103-2610
Telephone: 860-525-2000
Fax: 860-525-8425
e-mail: lymedfn@aol.com
Internet: www.lyme.org
Letter to the Editor*

The archy of Triumph?

Excerpts from "archy declares war" by the famous New York Sun columnist, archy the cockroach, as they appeared overnight on the typewriter of Don Marquis, newspaper reporter:

i am going to start
a revolution...
i shall organize the insects...
hearken to my calling...
black legged spiders
with red hearts of hell...
come, come, come...
bloodsuckers wriggle
out of the bayous
ticks cooties hornets...
this is war
...you are strong...
come in your billions
tiny small feet...
man is at your mercy
one sudden gesture
and all his empires perish
rise...

If it sounded like that was a call-to-arms between bloodsuckers and humans circa 1916 when the above column was written, the Star Wars of conflicts between species today is that of ticks and mankind, and the deer ticks are gaining.

There was an increase in reported cases of Lyme disease last year in our own aptly named Bucks County, Pennsylvania, but that tally represented just the tip of the iceberg. A Centers for Disease Control and Prevention study revealed that there has been, overall, at least a 30 times increase in reports of Lyme disease cases over the past 12 years. Other agencies indicated the total number of cases may be in the range of 1 to 2 million in the United States—many unrecorded by official agencies.

Tick-borne diseases, including many common pathogens—bacteria, viruses, parasites, and the spirochete that causes Lyme disease—are taking over our favorite places. The plain truth is that it is really not safe to live an outdoor life normally. The "archies" of the tick world are equal-opportunity warriors and have been known to deck muscled Marines as easily as bird watchers or other innocent civilians.

The great out-of-doors, beloved by most well-adjusted people, has become enemy turf and has to be retaken. The fields, yards, woods, parks, mountains, resorts, and riversides we know and love, all are landmined with the vectors of human misery and yes, sometimes death. The fact that more than 1/2 of the nearly-invisible ticks out there are infected with these human pathogens seldom makes the news.

No one wants to cause undue alarm; no one wants to lower real estate values or cause resorts to lose income. Therefore, very little is said in warning about the teeming hordes lying in ambush. While we medics are oriented to the prevention of individual suffering, in military terms there is an even more important strategy—serious enemies must be "terminated with extreme malice." The choice of weapons is important. Unless archy’s vision of success via the very magnitude of his “billions” is anticipated by our generals, efforts will continue to be diverted away from the need to develop antitick grenades, not just spirochete-seeking missiles, as important as those are.

Archy was prescient—the confrontation between species could be won, he thought, if the multilegged critter forces joined in an effort of great magnitude. . .they have. Tick-borne diseases are allied coinfactors. If we do not want a generation of physically and mentally weakened Americans who are chronically ill with Lyme disease, babesiosis, ehrlichiosis, and other increasingly local, no longer exotic, tick-carried pestilences, we need a new battle plan. The campaign into which we are heading will have to be restructured to eliminate ticks.

Militarily speaking, we might be able to terminate the principal tick hosts such as deer and mice if we could get medicine’s Joint Chiefs of Staff to acknowledge the enormity of this plague. Currently, that aspect is being ignored by their high command in academia, Washington, and the Centers for Disease Control and Prevention. This is war! Right, archy?

Virginia T. Sherr, MD
Holland, Pennsylvania

*Virginia T. Sherr, MD, is a physician from Holland, Pennsylvania, whose concern about the effects of Lyme disease and other tick-borne infections has inspired her journalistic crusade.—The Advance of Bucks County, PA.
The Spectrum of Gastrointestinal Manifestations in Children and Adolescents with Lyme Disease

Martin D. Fried, MD*; Matthew Abel, MD*; Dorothy Pietrucha, MD†; Yen-Hong Kuo, MS‡; and Aswine Bai, MD§

ABSTRACT

A clinical diagnosis of Lyme disease was made in 15 consecutive patients between the ages of 8 and 20 years who presented with a history of an erythema migrans rash followed by chronic gastrointestinal symptoms and multiple organ system complaints. Endoscopic evaluation was performed to assess the gastrointestinal mucosa and to obtain biopsies for polymerase chain reaction (PCR) to the outer surface protein A (Osp A) of Borrelia burgdorferi. As age matched controls, 10 patients with biopsy-proven Crohn’s disease were also tested by PCR. The laboratories assessing the histopathology and performing the PCR were blinded to the diagnosis of all specimens.

The presence of B burgdorferi DNA in the gastrointestinal tract was confirmed by PCR in all of the patients with the clinical diagnosis of Lyme disease who had chronic gastrointestinal symptoms and in two control subjects with Crohn’s disease. Biopsy evidence of chronic gastritis, chronic duodenitis, and chronic colitis was found in patients with Lyme disease who had chronic gastrointestinal symptoms and was associated with the presence of B burgdorferi.

The chronic gastrointestinal symptoms that occurred within 6 months of an erythema migrans rash and Lyme disease may be attributed to a direct effect or immune mediated response to B burgdorferi.

Key words: Lyme disease, abdominal pain, blood in stool, Borrelia burgdorferi, gastritis, duodenitis, colitis, polymerase chain reaction

INTRODUCTION

Lyme disease affects a wide range of organ systems, producing dermatologic, musculoskeletal, neurologic, genitourinary, lymphatic, hepatic, renal, respiratory, cardiovascular, and ocular manifestations. One report to date describes the presence of Borrelia burgdorferi in the stomach, intestines, and colon of children. To further address the clinical manifestations of Lyme disease and the possibility of direct involvement of the gastrointestinal (GI) tract, a prospective study was made of 15 consecutive patients who had a physician documented erythema migrans (EM) rash followed by chronic gastrointestinal symptoms and multiple organ system complaints of Lyme disease.

METHODS

All patients included in our study had a physician documented EM rash with no prior history of gastrointestinal complaints. They were referred to the pediatric gastroenterology and nutrition service of Jersey Shore Medical Center for evaluation of chronic abdominal pain, chronic diarrhea, acid reflux, or blood in the stool that occurred within 6 months after the onset of the EM rash. From January 1998 through April 1999, 15 consecutive patients satisfying the above clinical criteria were evaluated prospectively. There were 6 boys and 9 girls evaluated (mean age 14±3.6 years, range 8-20). Each case included a history, physical examination, complete blood cell count, liver function tests, sedimentation rate, antinuclear antigen (ANA), HLA B27, esophagogastroduodenoscopy (EGD), and/or colonoscopy. A Lyme Western blot was performed.

From the *Departments of Pediatric Gastroenterology, †Pediatric Neurology, ‡Academic Affairs, and §Pediatric Infectious Disease, Jersey Shore Medical Center, Neptune, New Jersey.

Address correspondence to Martin D. Fried, MD, 1945 Route 33, Neptune, NJ 07753.
for confirmation of an acute (immunoglobulin M) or past (immunoglobulin G) *B. burgdorferi* infection. A positive IgM Western blot was interpreted as 2 of 3 bands (23, 39, 41 kD). A positive IgG Western blot was interpreted as 5 or more of the following *B. burgdorferi*-specific bands: 18, 23, 28, 31, 34, 39, 41, 45, 58, 66, 93 kD. A diet history was taken to assess the dietary fat intake. Ultrasonography of the abdomen was performed when the history suggested a diagnosis of gallstones or pancreatitis. Stool samples were examined for occult blood, *Salmonella, Shigella, Yersinia, Campylobacter*, ova and parasites, and *Clostridium difficile* toxin. Gastrointestinal (GI) biopsies were reviewed to assess the mucosa by microscopy and whether *Helicobacter pylori* (on EGD only) or eosinophilia was present.

Biopsy specimens were taken from areas of the GI tract that looked inflamed during EGD or colonoscopy. The biopsies were assigned randomly to three histopathologists who were blinded to the diagnosis of the specimens they received. The histopathologists did not perform a silver stain for the detection of spirochetes because it is not routinely done. Biopsies were reported as acutely inflamed when polymorphonuclear cells were present in the mucosa and chronically inflamed if 6 or more plasma cells and lymphocytes were present in the gastric mucosa without polymorphonuclear cells. Chronic duodenitis or chronic colitis was diagnosed when more than 6 intraepithelial lymphocytes per 100 surface absorptive cells were present in tissue biopsies in conjunction with a distortion in glandular architecture.

Polymerase chain reaction (PCR) for DNA to *B. burgdorferi* was performed on all biopsies by Medical Diagnostic Laboratories in Mount Laurel, New Jersey. In all patients in which *B. burgdorferi* DNA was detected, PCR for *B. burgdorferi* RNA polymerase was performed and results are reported in the Table. As a target for DNA amplification, the gene coding for the outer surface protein A (OspA) of *B. burgdorferi* was selected and analyzed as described below.

DNA Isolation from Biopsy Specimens

Total DNA was extracted from duodenal, gastric, and colonic biopsies as described by Maniates et al. The samples were centrifuged (5 minutes, 4°C, 14K rpm) and the pellet was subjected to 500 μL of cell lysis buffer (0.5% SDS, 470 μL TE buffer, 5 μL of proteinase K (20 μg/μL)). The samples were incubated for 24 hours at 50°C. Proteinase K (5 μL) was added to the mixture every 6 hours. DNA was extracted by phenol chloroform, followed by ethanol precipitation. DNA concentrations were determined spectrophotometrically by measuring the A260.

DNA Amplification

The SL primers (SLA 5′-AAT AGG TCT AAT AAT AGC CTT AAT AGC-3′ SLB 5′ CTA GTG TTT TGC CAT CTT CTT TGA AAA-3′) are suitable for amplification of all *B. burgdorferi* sensu lato isolates. The SL primers amplify a region (nucleotide 21-328) of the *B. burgdorferi* sensu stricto B31 OspA sequence. One μg of isolated DNA was used as a template DNA in the presence of a 20 pmol sample of each primer in a 50 μL reaction mixture. The samples were subjected to 35 amplification cycles in a Perkin Elmer 2400 thermocycler (Foster City, CA) under the following conditions: 93°C, 1 minute; 65°C, 1 minute; and 72°C, 1 minute. PCR amplification products were resolved onto 1.5% agarose electrophoresis gels and visualized under ultraviolet light with ethidium bromide.

To test the presence of inhibitory substances and to provide a positive control in the PCR assay, amplifications were also performed with primers targeting the histone gene. A positive control was performed with every biopsy specimen. It included a PCR in the presence of 100% *B. burgdorferi* DNA that was purchased from the American Type Culture Collection (Rockville, MD). This *B. burgdorferi* DNA was isolated from *Ixodes scapularis* tick, New York Type strain, and shipped frozen to the laboratory. The negative control performed with each biopsy specimen included the PCR in the absence of DNA. A second genomic DNA control is done weekly at the laboratory as part of their quality control. Physical containment measures ensured the absence of DNA contamination in the PCR procedure.

As age-matched controls, 10 adolescents with biopsy proven Crohn's disease (5 boys, 5 girls, 13.5 ± 2.5 years, range 10-17), who had not been on antibiotics one year prior to endoscopy, were also tested by PCR. The laboratory performing the PCR analysis was blinded to the diagnosis of all specimens they received.

Statistical Analysis

The sensitivity and specificity of PCR for the detection of *B. burgdorferi* in the GI tract was calculated. The confidence intervals (CI) were calculated by using the Fischer's Exact test method. A Fischer's exact test was used to determine the association between inflammation and PCR positivity in each of the biopsied sites.

RESULTS

Patients with Lyme disease presented with chronic abdominal pain (n=10, 67%), chronic diarrhea (n=1, 7%), visibly evident blood in the stool (n=2, 13%), and acid reflux with heartburn (n=2, 13%). In all 4 patients whose biopsies revealed evidence of colitis, the abdominal pain was characterized as a crampy, periumbilical pain that started at the right middle quadrant of the abdomen and spread to the left middle quadrant of the abdomen or vice versa. The pain was unrelated to meals and occurred.
Table. The gastrointestinal manifestations and biopsy results of patients with Lyme (I-15) and Crohn’s disease (A-J).

<table>
<thead>
<tr>
<th>Patient</th>
<th>Antibiotics (months)*</th>
<th>Chief complaint</th>
<th>Gastric biopsy</th>
<th>Duodenal biopsy</th>
<th>Colon biopsy</th>
<th>Gastric PCR1</th>
<th>Duodenal PCR</th>
<th>Colon PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>abdominal pain</td>
<td>gastritis</td>
<td>duodenitis</td>
<td>colitis</td>
<td>DNA</td>
<td>DNA</td>
<td>DNA/RNA</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>blood in stool</td>
<td>gastritis</td>
<td>(-)</td>
<td>colitis</td>
<td>DNA</td>
<td>(-)</td>
<td>DNA</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>acid reflux</td>
<td>(-)</td>
<td>(-)</td>
<td>NB</td>
<td>DNA</td>
<td>(-)</td>
<td>NB</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>abdominal pain</td>
<td>gastritis</td>
<td>(-)</td>
<td>(-)</td>
<td>DNA</td>
<td>DNA</td>
<td>(-)</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>abdominal pain</td>
<td>gastritis</td>
<td>duodenitis</td>
<td>(-)</td>
<td>(-)</td>
<td>DNA</td>
<td>(-)</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>abdominal pain</td>
<td>(-)</td>
<td>(-)</td>
<td>NB</td>
<td>DNA/RNA</td>
<td>(-)</td>
<td>NB</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>diarrhea</td>
<td>(-)</td>
<td>(-)</td>
<td>colitis</td>
<td>DNA</td>
<td>(-)</td>
<td>DNA</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>abdominal pain</td>
<td>gastritis</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>DNA/RNA</td>
<td>(-)</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>abdominal pain</td>
<td>gastritis</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>DNA/RNA</td>
<td>(-)</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>abdominal pain</td>
<td>gastritis</td>
<td>(-)</td>
<td>NB</td>
<td>DNA</td>
<td>(-)</td>
<td>NB</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>blood in stool</td>
<td>NB1</td>
<td>NB</td>
<td>colitis</td>
<td>NB</td>
<td>NB</td>
<td>DNA/RNA</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>abdominal pain</td>
<td>gastritis</td>
<td>duodenitis</td>
<td>NB</td>
<td>(-)</td>
<td>DNA</td>
<td>NB</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>abdominal pain</td>
<td>(-)</td>
<td>(-)</td>
<td>NB</td>
<td>DNA</td>
<td>(-)</td>
<td>NB</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>abdominal pain</td>
<td>(-)</td>
<td>(-)</td>
<td>NB</td>
<td>DNA/RNA</td>
<td>(-)</td>
<td>NB</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>acid reflux</td>
<td>gastritis</td>
<td>(-)</td>
<td>NB</td>
<td>DNA</td>
<td>(-)</td>
<td>NB</td>
</tr>
</tbody>
</table>

*Number of months of antibiotic treatment for Lyme disease prior to GI biopsy.

1**PCR-DNA** denotes the detection of B burgdorferi DNA (the outer surface protein A) by PCR of biopsy specimens. DNA/RNA denotes the detection of B burgdorferi DNA and RNA polymerase by PCR of biopsy specimens.

2**(-)** denotes no histological pathology detected on biopsy or no detection of B burgdorferi by PCR.

3**NB** denotes an area of the gastrointestinal tract that was not biopsied and a PCR test that was not performed due to the absence of a specimen from that site.

Abbreviations: DNA = deoxyribonucleic acid; NB = not biopsied; PCR = polymerase chain reaction; RNA = ribonucleic acid.

Throughout the day. In the remaining 6 patients with abdominal pain whose biopsies revealed gastritis, duodenitis, or both, the abdominal pain was characterized as periumbilical, burning, and improved by avoiding fried foods and foods high in fat content. Ultrasonography of the abdomen did not reveal any gallstones or evidence of pancreatitis. In 2 patients who complained of acid reflux, their pain was a burning midepigastric pain that radiated to the esophagus. The pain occurred within the first postprandial hour and was relieved by antacids. Ten of the 15 patients with Lyme disease had evidence of inflammation at a biopsy site with detection of B burgdorferi DNA at that site. Patients 2 and 11 had blood in their stool and presented with the clinical features of Crohn’s disease (ie, 15 pound weight loss in a year, arthritis of the knee, protein losing enteropathy) and ulcerative colitis (6 bloody bowel movements a day for a week), respectively. The biopsies of all the patients with Lyme disease revealed no evidence of granulomas or terminal ileitis. In patient 6, the IgM Western blot was positive and showed
the 23, 31, 34, 39, 41, 58, and 66 kd bands. The IgG Western blot was negative (no bands present). No other patient had a positive Western blot. All control patients with Crohn’s disease had biopsy proven terminal ileitis and granulomatous colitis. Lyme disease was diagnosed in 15 patients and 2 with Crohn’s disease had a positive PCR to *B burgdorferi* DNA in biopsy specimens from the gastrointestinal tract (Table). In 6 patients with Lyme disease, *B burgdorferi* DNA was detected in the GI tract and *B burgdorferi* RNA polymerase was detected by PCR.

A positive *B burgdorferi* PCR occurred with chronic inflammation in the GI tract of 11 of 15 patients with Lyme disease. In patients 8 and 9, inflammation occurred in the stomach; however, *B burgdorferi* DNA was detected in the colon. *B burgdorferi* DNA was detected in the GI tract in the absence of inflammation in 4 patients (27%), 3 of whom had received at least 2 months of antibiotics prior to endoscopy. There was no statistically significant association between PCR positivity in the GI tract and chronic inflammation.

In 10 of 15 patients (67%), antibiotic therapy for Lyme disease had been prescribed within 1 to 5 months prior to endoscopy (n=4, 1-2 months; n=3, 3-4 months, and n=3, 5 months). Despite prior antibiotic use, all 4 patients with colitis were PCR positive for *B burgdorferi* DNA in the colon while 5 of 9 with gastric inflammation were PCR positive in gastric biopsies. *Helicobacter pylori* was not detected in any of the gastric biopsies. *Salmonella*, *Shigella*, *Yersinia*, Campylobacter, and *Clostridium difficile* toxin was not detected in any of the stool samples. HLA-B27 was positive in patients 1 and 11 and in none of the controls. ANA was positive and had a speckled pattern in patients 2, 5, and 6. An elevated sedimentation rate of 85 and 28 were found in patients 4 and 13, respectively.

The lab performing the PCR had a false positive rate of 1 in 500 by analyzing 6550 specimens from January 1998 through April 1999. The sensitivity of GI *B burgdorferi* DNA detection was 100% (15/15) with a 95% CI (81.9%, 100%). The specificity was 80% (8/10) with a 95% CI (44.4%, 97.5%). The positive predictive value was 88.2% (15/17) with a 95% CI (63.6%, 98.5%).

DISCUSSION

Abdominal pain and the associated GI pathology in children with Lyme disease whose biopsies are PCR positive for *B burgdorferi* has not been reported previously. The presence of an EM rash in the past or a positive Western blot and chronic GI symptoms in the past does not mean that the two are related. However, positive detection of the OspA gene in biopsies confirmed the presence of *B burgdorferi* DNA in the biopsied tissue samples while offering the advantage of no cross reaction with other spirochete species that have been previously detected in the GI tract. It is possible that PCR, a highly sensitive method, could lead to false positive results because of the amplification of similar sequences of related microorganisms. However, a false positive rate of 1 in 500 biopsy specimens suggests that this occurs infrequently.

B burgdorferi may contribute to GI symptoms by its presence directly in the GI tract or by eliciting an inflammatory or immune response. In 11 patients (73%), inflammation in the GI tract was accompanied by a positive PCR to *B burgdorferi* suggesting an association between the infection and inflammation in these patients. In 2 patients the detection of the DNA occurred at a site distant from the inflammation. In the absence of inflammation, the presence of *B burgdorferi* may have contributed to abdominal pain and acid reflux (patients 3, 6, and 13).

Most available evidence suggests that appropriate antimicrobial treatment is highly efficacious to cure Lyme disease. As previously reported, we found that *B burgdorferi* persisted even after 1 to 5 months of antibiotic therapy. Despite prior antibiotic therapy, we were still able to detect *B burgdorferi* DNA and RNA polymerase in these patients. The detection of RNA polymerase in 5 patients suggests that the infection was actively replicating. In two cases (patients 1 and 6), this active replication occurred despite 5 months of antibiotic therapy for Lyme disease. Previous work has demonstrated that *B burgdorferi* can invade human fibroblasts and be protected from antimicrobial action. The ability of the organism to survive in this intracellular environment is one mechanism by which it may evade the immune response of the host and thus persist. Antibiotic resistance is another method that could explain the persistence of the organism despite prior antibiotic therapy. While the detection of *B burgdorferi* may represent evidence of prior or ongoing Lyme disease, it may not be the only etiology of the patients' abdominal symptoms.

Duray and Steere reported that *B burgdorferi* elicits interleukin-1, collagenase, prostaglandin E2, and circulating immune complexes. Some of these immune complexes may exert their effect at a distant site from the infection. Two patients (8 and 9) illustrate this possibility. In each case, *B burgdorferi* was detected in the colon but the inflammation was found in the stomach.

An inflammatory or immune reaction as a result of Lyme disease could affect the colon and may persist because of circulating immune complexes. Inflammatory and immune etiologies have also been proposed in Crohn’s disease; however, this is the first report to describe the detection of *B burgdorferi* in patients with Crohn’s disease. The role of *B burgdorferi* in patients with Crohn’s disease needs further investigation.
CONCLUSION

Children and adolescents with a history of Lyme disease and chronic GI symptoms occurring within 6 months of an EM rash, had evidence of inflammation in the stomach, duodenum, and colon. We found *B burgdorferi* by PCR of GI biopsies to be associated with chronic inflammation. The inflammatory reaction we describe may have been caused by spirochetes or by immune system products elicited in response to the spirochete presence.

REFERENCES

Reprinted Antibiotic Treatment in Chronic Lyme Disease

Brian A. Fallon*, MD; Felice Tager*, PhD; Lesley Fein†, MD; Kenneth Liegnert‡, MD; John Keilp*, PhD; Nicola Weiss*, PhD; and Michael R. Liebowitz*, MD

ABSTRACT

Patients with chronic Lyme disease who experience persistent cognitive deficits despite having received the recommended antibiotic treatment pose a therapeutic dilemma. This pilot study was designed to assess whether additional antibiotic therapy is beneficial.

Enrolled in the study were 23 patients with complaints of persistent memory problems who had previously received 4-16 weeks of intravenous antibiotic therapy. Patients were tested at baseline and 4 months later. During this interval, the private physician determined treatment (intravenous, intramuscular, oral, or none). Assessments included standardized measures of cognition, depression, anxiety, and functional status.

Between times 1 and 2, 5 patients were given no antibiotics and 18 were given additional antibiotics: 7 intravenously, 4 intramuscularly, and 7 orally. At time 1, there were no statistically significant group differences in cognition, depression, or anxiety between those who later received antibiotics and those who didn’t. At time 1, the 23 patients were also functionally disabled. At time 2, compared with patients who received no antibiotics, patients given antibiotics scored better on overall and individual measures of cognition. Patients given intravenous antibiotics showed the greatest functional improvement (pain, physical functioning, energy) and the most cognitive improvement, even when controlling for baseline differences in cognition between the treatment groups. Patients who did not have a reactive Western blot currently or historically were just as likely to improve cognitively as patients with reactive Western blot results.

This uncontrolled study suggests that repeated antibiotic treatment can be beneficial, even among patients who have been previously treated and even among patients who are currently Western blot negative, with the intravenous route of treatment being the most effective. A double-blind placebo-controlled study is needed to confirm these results.

Key words: encephalopathy, Lyme disease, treatment

INTRODUCTION

Lyme disease, caused by infection with the spirochete Borrelia burgdorferi, can result in a chronic illness that persists despite standard courses of antibiotic therapy. Characterized by persistent fatigue, arthralgias, myalgias, peripheral neurologic disorders, and/or central neurologic problems including mild to severe encephalopathy, chronic Lyme disease (CLD) may result in significant functional disability.

From the *New York State Psychiatric Institute and Columbia University Department of Psychiatry, New York, New York; †Private Practice, West Caldwell, New Jersey; ‡Private Practice, Armonk, New York.

Address correspondence to Brian A. Fallon, MD, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032.

Two main etiologies have been invoked to explain the persistent symptoms: persistent infection and a postinfectious immunoinflammatory disorder.

The persistent infection hypothesis is based on several lines of evidence. Uncontrolled clinical case reports indicate that some patients benefit from longer and repeated courses of antibiotic therapy. Microbiological studies have shown that, even after antibiotic therapy, persistence of the organism may be demonstrated by either culture or polymerase chain reaction analysis in animals and humans. Further, microbiologists speculate that persistence may be promoted by the ability of B burgdorferi to lodge intracellularly in human endothelial cells, astrocytes, fibroblasts, and macrophages and to modify its shape into potentially antibiotic-protected cyst-like forms. According to the persistent infection theory, failure of antibiotic therapy result from an intracellular
location of the organism, the selection of resistant strains, or sequestration of the organism in "protected" sites, such as the central nervous system.

The postinfectious immunoinflammatory hypothesis also is supported by several lines of evidence. At least for Lyme arthritis, it has been suggested that patients who carry the HLA-DR4 or DR2 allele are more vulnerable to developing antibiotic-resistant chronic Lyme arthritis.26 For neurologic Lyme disease, only one study reported an association with these alleles,27 whereas other European studies were not able to find such an association.26,29 Molecular mimicry may also account for a portion of persistent Lyme disease, but the evidence for this has been indirect, based on the observation that antibodies from patients with Lyme disease have been found to cross-react with gangliosides, myelin, and a 64-kd protein seen in normal human axons.30–34 Flagellin protein may generate cross-reactive antibodies to myelin basic protein (eg, elevation has been seen among patients with neuroborreliosis). Finally, persistent neurologic Lyme disease may not be caused by autoimmunity but, instead, caused by the damage done by persistent activation of inflammatory cytokines by remnants of pieces of the spirochete. Elevated levels of interleukin-6, tumor necrosis factor-alpha, and nitric oxide are known to be produced by neural cells exposed to B burgdorferi.35,36 These cytokines can induce many of the symptoms of fatigue and malaise associated with CLD.

Uncertainty regarding the etiology of CLD has led to considerable polarization within the medical community regarding etiology and concern over the serious consequences associated with either undertreating or overtreating patients. In view of the complexity of borreliae and the intricacy of the host-pathogen interactions, it is likely that individual patients may suffer from persistent infection, residual damage, an ongoing autoimmune reaction, or any combination of these.

Given the etiological uncertainty regarding CLD and the importance of measuring response to treatment in an objective way, in 1993 we designed an uncontrolled pilot study to determine whether patients with persistent memory complaints after the diagnosis and treatment of Lyme disease, who have been previously adequately treated, show quantitative cognitive improvement with repeated antibiotic treatment over a four-month interval.

METHODS

Patients

Institutional Review Board approval was obtained for this study from the New York State Psychiatric Institute. Prior to formal assessments, patients were interviewed by the primary investigator to confirm study eligibility and to obtain signed informed consent.

Adults age 18-65 with previously diagnosed and treated Lyme disease who complained of persistent cognitive symptoms were recruited from the offices of community physicians who practice in Lyme endemic areas. The diagnosis of Lyme disease was based on the following criteria: a) exposure to a Lyme endemic area; b) a history of a physician-diagnosed erythema migrans rash and/or a positive serological test for Lyme disease (ELISA, Western blot); and c) a history of clinical symptoms typical of Lyme disease affecting the cardiac, neurologic, and/or articular systems. To be eligible for our study, all patients had to have been previously treated with at least 4 and no more than 16 weeks of intravenous antibiotics prior to study enrollment. Because this study was designed prior to the establishment of the two-tiered serologic testing method now recommended by the Center for Disease Control and Prevention (CDC),37 our criteria used the prior CDC standard of either a reactive ELISA or a reactive Western blot. Although some patients had cerebral spinal fluid studies done previously and/or magnetic resonance imaging scans, these studies were not requirements for study entry.

Assessments

Patients were evaluated at baseline and four months later on a battery of standardized tests. These tests evaluated disability (MOS Short-form 36 Functional Status Questionnaire), anxiety (Zung Anxiety Scale), depression (Beck Depression Inventory), and cognition (Wechsler Adult Intelligence Scale, the Wechsler Memory Scale, and the Controlled Oral Word Association Test). Between the two assessment points, patients returned to their private physician.

Neuropsychological change was assessed in two ways. First, the group’s mean change between Time 1 and Time 2 on each of the neuropsychological tests was assessed. Second, a composite z-score was created for each individual by adding the number of standard deviations away from published age norms on the following 16 tests: each of the 11 subtests of the WAIS, the 4 tests of the Wechsler Memory Scale (Verbal Memory, Visual Memory, Attention/Concentration, Delayed Memory), and the Controlled Oral Word Association Test.

Serum was collected from 19 of the 23 patients for Lyme serology testing, which was sent to BBI Clinical Laboratories for analysis. Serum from 16 patients was also sent to the University Hospital of Stony Brook for B burgdorferi-specific immune complex assays.38,39

Treatment

Because this was a pilot clinical study, treatment over the four-month interval was not controlled. Patients were treated according to the clinical judgment of their physi-
Table 1. Weeks of treatment with oral, intravenous (IV), or intramuscular (IM) antibiotic prior to study entry (N = 23).

<table>
<thead>
<tr>
<th></th>
<th>Oral Group</th>
<th>IV Group</th>
<th>IM Group</th>
<th>No Antibiotic</th>
<th>All Groups</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior oral antibiotics</td>
<td>27.6±19.2</td>
<td>12.7±12.5</td>
<td>95.8±76.0</td>
<td>19.8±26.2</td>
<td>33.2±44.2</td>
<td>NS</td>
</tr>
<tr>
<td>Prior IV antibiotics</td>
<td>11.1±13.3</td>
<td>8.7±3.9</td>
<td>9.3±4.6</td>
<td>4.4±1.5</td>
<td>8.6±7.9</td>
<td>NS</td>
</tr>
<tr>
<td>Prior IM antibiotics</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NS</td>
</tr>
</tbody>
</table>

Abbreviation: NS = not significant.

cians. Most patients were treated with antibiotics [oral, intramuscular (IM), or intravenous (IV)] whereas smaller numbers of others received no antibiotics. For exploratory analyses, patients were divided into 4 subgroups based on the treatment chosen by their private physician: none, oral, IM, IV.

Because the treatment was chosen by numerous different private internists, the treatments varied greatly both in the actual choice of antibiotic, the duration of treatment during the interval, and whether or not different routes of antibiotics were used simultaneously or separately (e.g., oral and IM, oral and IV). The only constant was that patients on IM antibiotics were all given penicillin G (benzathine penicillin G) for the first time. The majority of patients on oral antibiotics alone during the assessment interval were maintained on the antibiotics that they had been on prior to study entry. To be included in the oral, IM, or IV antibiotic groups, patients had to have received at least 10 days of treatment during the interim.

Statistics
Statistical tests included paired sample t-tests, analyses of variance (ANOVA), Tukey's HSD, Pearson Correlation, and analyses of covariance (ANCOVA) to control for baseline differences. Significance was defined as a two-tailed P-value of less than or equal to .05.

RESULTS

Description of Sample
There were 23 patients enrolled. Mean age was 42.7 years (SD 13.25), ranging from 20-65 years with a gender distribution of 30% male and 70% female. The mean length of time since diagnosis was 21.33 months (SD 22.2), ranging from 2 to 168 months. The symptom history of these 23 patients since the onset of Lyme disease included the following: memory loss (100%), arthralgias (96%), word-finding problems (91%), headaches (91%), excessive fatigue (87%), sleep disturbance (87%), irritability and mood lability (87%), arthritis (52%), recalled tick bite (39%), erythema migrans (total: 39% of which 26% were physician-diagnosed at the time and 13% were considered retrospectively by physicians to have been erythema migrans based on description), and Bell's palsy (13%). Of the 23 patients, 22 had had a reactive ELISA or Western blot for Lyme disease. The one historically seronegative patient had a clinical history of a physician diagnosed erythema migrans, arthritis, and Bell's palsy; this patient's serum was reactive on IgM Western blot from BBI Clinical Laboratories.

Study laboratory results on 19 patients were as follows. ELISA: IgG—1/19 reactive, 11/19 equivocal; IgM—0/19 reactive, 2/19 equivocal. Western blot: IgG—0/19 reactive, 5/19 equivocal; IgM—4/19 reactive, 7/19 equivocal. In 5 of 19 patients either a reactive ELISA or Western blot was found.

Assays for B burgdorferi-specific immune complexes were conducted on 16 patients. IgG B burgdorferi-immune complexes—8/16 reactive. IgM B burgdorferi-immune complexes—3/16 reactive. Neither IgG nor IgM B burgdorferi-immune complexes was found in 9 of 16 patients.

The mean duration of prior antibiotic treatment is shown in Table 1. An ANOVA failed to find a difference between the subgroups on the extent of prior oral antibiotics and prior IV antibiotics.

Time 1 (Baseline) Scores
Cognition. At baseline, the 23 patients as a group had average verbal, performance, and full scale IQ. However, these patients, as a group, had significant impairments in verbal memory, general memory, and delayed memory on the Wechsler Memory Scale when compared with the WAIS Verbal IQ and Full Scale IQ. When the 23 patients were subdivided into the 4 treatment groups and the baseline results on specific cognitive tests were compared using an ANOVA, no significant differences were found. Similarly, when comparison was made using a Tukey HSD analysis of multiple comparisons, no significant differences were found on the cognitive tests. In addition, at baseline, there were no statistically significant differences between the 4 treatment subgroups on the mean composite z score (oral 1.1±7.7; IV -3.6±22.6, IM 4.2±5.3; none -4.9±7.2).

Anxiety/Depression. On the Beck Depression Inventory, the 23 Lyme patients had a mean score of
<table>
<thead>
<tr>
<th></th>
<th>Oral Group</th>
<th>IV Group</th>
<th>IM Group</th>
<th>No Antibiotic</th>
<th>All Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of time on oral antibiotics</td>
<td>78.0±29.6</td>
<td>46.1±43.1</td>
<td>0</td>
<td>0</td>
<td>49.7±44.0</td>
</tr>
<tr>
<td>% of time on IV antibiotics</td>
<td>0</td>
<td>56.0±29.7</td>
<td>0</td>
<td>0</td>
<td>17.0±30.6</td>
</tr>
<tr>
<td>% of time on IM antibiotics</td>
<td>0</td>
<td>0</td>
<td>77.0±27.5</td>
<td>0</td>
<td>13.7±31.4</td>
</tr>
<tr>
<td>% of time on any antibiotics</td>
<td>78.0±29.6</td>
<td>67.2±26.9</td>
<td>90.8±18.5</td>
<td>0</td>
<td>59.9±39.9</td>
</tr>
</tbody>
</table>

Note. There were no significant differences among the antibiotic treated patients in either the percentage of time on any antibiotic or in the percentage of time on oral antibiotic during the interim. Abbreviations: IM = intramuscular; IV = intravenous.

16.0±10.02 (range 2.43) indicating a mild level of depression for the group. On the Zung Anxiety Index, the mean score was 53.5±9.18, indicating a moderate level of anxiety for the group (range 41-74). There were no treatment subgroup differences on these two measures on a group ANOVA. No significant correlation was noted between the anxiety/depression scores and the degree of cognitive impairment at baseline. Anxiety and depression, however, were positively correlated (r = .647, P = .001).

Functional status. The scores on the subscales of the MOS-SF 36 Disability measure revealed marked disability among these patients with CLD: energy/fatigue 23.6±17.9, pain 35.8±24.7; emotional well-being 51.1±23.5, general health 39.4±24.2; physical functioning 49.1±21.5; role (physical) 13.6±25.3, role (emotional) 39.4±44.4; social functioning 40.3±31.1. There was no significant group difference among the 4 treatment subgroups on emotional well being, general health, physical functioning, role (emotional), role (physical), or social functioning. However, the groups were significantly different on energy/fatigue, with the least energy being reported by the patients who were subsequently given a course of IV antibiotic treatment (IV 9.2±5.6; IM 31.6±29.2, oral 22.9±11.6; none 37.0±18.6, F = 3.2, P = .048).

Treatment. During the four-month interval between assessments, 5 of the patients were given no treatment, 7 were given oral antibiotics only, 7 were given IV antibiotics (with or without oral antibiotics), and 4 were given IM antibiotics (with or without oral antibiotics). For the patients on one or more oral treatments only, these antibiotics included doxycycline, minocycline, amoxicillin, penicillin, azithromycin, clarithromycin, cefuroxime, and cefixime. The IM antibiotic used was benzathine penicillin G. Intravenous antibiotics included imipenem, cefotaxime, ceftriaxone, and vancomycin. Table 2 specifies the percentage of time between Time 1 and Time 2 the patients in each group were given antibiotics. No significant difference was noted between the groups of antibiotic-treated patients on the number of weeks treated between Time 1 and Time 2.

Time 2 Scores

Cognitive Change

A) Overall cognitive change. For the 18 antibiotically treated patients, the composite z score between Time 1 and Time 2 improved 6.1 standard deviations (t = 2.8, P = .012) compared with an improvement of only 2.8 standard deviations among the 5 patients who received no treatment (ANCOVA Any Abx vs None, F = 4.9, P = .039).

B) Overall cognitive change by type of treatment. When the 23 patients were sorted into subgroups based on treatment received during the interim and their Time 2 scores were compared (controlling for baseline z-score differences), patients retreated with IV antibiotics did the best: the composite z-score improved 11.8 SD (median 8.9) for the 7 IV patients, 2.4 SD (median 2.5) for the 6 IM patients, 2.3 SD (median 2.0) for the 7 po patients (ANCOVA IV vs PO, F = 6.9, P = .023), and 2.8 SD (median 2.0) for the 5 no antibiotic patients (ANCOVA IV vs None, F = 10.58, P = .010).

C) Overall cognitive change and duration of treatment. There was no significant correlation between duration of time on antibiotics and composite z-score improvement. However, when the sample was divided into three groups based on the percentage of time on antibiotics between Time 1 and Time 2 (No Abx; Abx 50% of the time or less; Abx >50% of the time), the composite z-score improvement was 2.8 SD, 4.9 SD, and 6.5 SD respectively, suggesting that longer term treatment may be beneficial.

D) Neuropsychological subtest improvement. Comparing Time 1 and Time 2 using a paired samples t-test for the 18 antibiotically treated patients, marked improvement was noted in a variety of subtests including full scale IQ, performance IQ, verbal memory, general memory, attention/concentration, and delayed memory (Figure; Table 3). To examine whether memory within individuals improved over the four-month period, the dif-
Table 3. Baseline and time 2 scores for antibiotically treated patients (n=18).

<table>
<thead>
<tr>
<th>Test</th>
<th>Time 1 (SD)</th>
<th>Time 2 (SD)</th>
<th>t-score</th>
<th>DF</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wechsler Adult Intelligence Scale-Revised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full scale IQ</td>
<td>102.2±16.6</td>
<td>109.1±11.9</td>
<td>-3.28</td>
<td>17</td>
<td>.004</td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>102.7±16.2</td>
<td>106.2±9.1</td>
<td>-1.46</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>101.7±16.2</td>
<td>110.8±14.6</td>
<td>-4.60</td>
<td>17</td>
<td><.001</td>
</tr>
<tr>
<td>Information</td>
<td>10.7±3.1</td>
<td>10.9±2.2</td>
<td>-1.704</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Digit span</td>
<td>10.6±3.3</td>
<td>11.3±2.5</td>
<td>-1.42</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>11.0±3.3</td>
<td>11.3±2.2</td>
<td>-1.56</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>10.6±3.4</td>
<td>11.2±2.2</td>
<td>-1.871</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Comprehension</td>
<td>9.5±2.8</td>
<td>11.1±1.8</td>
<td>-3.12</td>
<td>17</td>
<td>.006</td>
</tr>
<tr>
<td>Similarities</td>
<td>10.3±2.8</td>
<td>10.6±1.6</td>
<td>-1.65</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Picture completion</td>
<td>10.2±3.6</td>
<td>11.4±2.8</td>
<td>-1.64</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Picture arrangement</td>
<td>10.9±3.5</td>
<td>11.7±2.9</td>
<td>-1.04</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Block design</td>
<td>10.1±3.3</td>
<td>10.9±2.8</td>
<td>-1.6</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Object assembly</td>
<td>9.9±2.9</td>
<td>11.2±2.4</td>
<td>-2.36</td>
<td>17</td>
<td>.031</td>
</tr>
<tr>
<td>Digit symbol</td>
<td>10.1±3.1</td>
<td>11.1±3.0</td>
<td>-2.47</td>
<td>17</td>
<td>.028</td>
</tr>
<tr>
<td>Wechsler Memory Scale-Revised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal memory</td>
<td>92.9±19.1</td>
<td>102.3±14.9</td>
<td>-3.09</td>
<td>17</td>
<td>.007</td>
</tr>
<tr>
<td>Visual memory</td>
<td>104.1±19.5</td>
<td>110.4±12.7</td>
<td>-1.50</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>General memory</td>
<td>95.1±16.7</td>
<td>106.6±14.9</td>
<td>-4.57</td>
<td>17</td>
<td><.001</td>
</tr>
<tr>
<td>Attention/concentration</td>
<td>101.3±17.9</td>
<td>108.4±12.6</td>
<td>-1.96</td>
<td>17</td>
<td>.066</td>
</tr>
<tr>
<td>Delayed memory</td>
<td>94.9±16.9</td>
<td>109.9±15.8</td>
<td>-4.14</td>
<td>17</td>
<td>.001</td>
</tr>
<tr>
<td>Verbal fluency (FAS)</td>
<td>42.2±17.2</td>
<td>45.4±15.9</td>
<td>-1.03</td>
<td>17</td>
<td>NS</td>
</tr>
<tr>
<td>Beck Depression Inventory (n=17)</td>
<td>14.5±7.5</td>
<td>12.1±8.0</td>
<td>.863</td>
<td>16</td>
<td>NS</td>
</tr>
<tr>
<td>Zung Anxiety Scale</td>
<td>52.8±8.0</td>
<td>46.3±9.8</td>
<td>2.48</td>
<td>17</td>
<td>.024</td>
</tr>
</tbody>
</table>

Figure. Change in cognitive scores for 18 antibiotically treated chronic Lyme disease patients.

ference between general memory and verbal IQ was calculated for each patient. The 18 patients given antibiotics significantly improved (narrowing the distance between general memory and verbal IQ by 4.6 scaled points) over the four-month interval whereas the 5 patients given no antibiotics worsened (broadening the distance between the two scores by 7.6 scaled points) (ANCOVA $F = 5.22$, $P = .033$).

E) Cognitive change associated with treatment received. When an ANCOVA was used to compare the Time 2 scores of the patients based on the treatment received during the interim, the IV group generally performed better than patients in the other groups. Significantly greater improvement was noted for the IV group compared with the oral group on the subtests of attention/concentration ($F = 13.2$, $P = .005$), general memory ($F = 5.9$, $P = .038$) and visual memory ($F = 8.1$, $P = .019$). Marked improvement was also seen among the IV patients on verbal fluency and verbal memory. When the IV group was compared to the oral group, greater improvement was noted for the IV group on the subtests of attention/concentration ($F = 4.2$, $P = .064$), general memory ($F = 5.3$, $P = .042$), and visual memory ($F = 27.1$, $P < .001$).
F) Cognitive change associated with current laboratory seropositivity. No significant difference in mean improvement in cognition (composite z-score) was noted comparing antibiotically treated patients who did and who did not have currently reactive *B. burgdorferi*-specific antibody levels using the criteria of either BBI Clinical Laboratories (ELISA or Western blot) or Dr. Coyle’s Immune Complex assay. When we separated patients into two groups based on whether or not they met the two-tiered testing requirement of a reactive or equivocal ELISA and a reactive Western blot historically, no significant differences in mean improvement in cognition were noted.

Anxiety/Depression

A) Overall change in depression/anxiety. Mild improvement on the Zung Anxiety scale and Beck Depression Inventory was noted among all 23 patients between Time 1 and Time 2. Significant improvement on the “Emotional Well-being” and “Role-Emotional” subtests of the MOS-SF 36 Rand functional status measure was noted among the 23 patients as a whole.

B) Overall psychiatric change by type of treatment. When the change in scores on anxiety and depression for the antibiotically treated patients between Time 1 and Time 2 were examined, a significant improvement was noted on the anxiety scale using a paired sample t-test. (Table 3). However, when an ANCOVA was used comparing Time 2 scores (controlling for Time 1 scores), no significant differences in anxiety or depression scores were noted based on presence or absence of antibiotic therapy or on route of treatment. Neither were significant changes noted between the individual subgroups on the scales of emotional well being and role functioning attributed to emotional health.

C) Correlation between psychiatric improvement and cognitive change. The percentage improvement in anxiety (10.7±19.4) was not correlated with improvement in cognitive z-score (5.36±8.22) among all 23 patients (r = .415, P = .044). Nor was there a significant correlation between percentage change in depression and improvement in cognition. Improvement in anxiety was, however, significantly correlated with improvement in depression (r = .459, P = .032).

Functional Status Improvement

A) Overall change in functional status. On the MOS-36SF for the antibiotically treated patients comparing Time 2 and Time 1, significant improvement was noted in the domains of energy/fatigue (t = 2.4, P = .030), pain (t = 3.6, P = .003), physical functioning (t = 2.4, P = .028), role physical (t = 2.1, P = .048), and social functioning (t = 3.2, P = .005). However, no significant differences were noted when an ANCOVA was used to compare the Time 2 scores of the patients who received no antibiotics and the patients who received any antibiotic, indicating that both groups showed functional improvement.

B) Overall functional change by type of treatment. A significant difference was not found using an ANCOVA when the functional status improvement of each of the 4 groups were examined together. However, when the patients who received IV antibiotics were compared with the other 3 groups (IM, oral, and no treatment) as a whole, there was greater improvement, even when baseline differences are controlled for, among the IV-treated patients in the areas of pain (F = 3.0, P = .099), energy/fatigue (F = 6.2, P = .020), general health (F = 3.9, P = .063), physical functioning (F = 6.8, P = .017), role physical (F = 4.5, P = .047), social functioning (F = 5.0, P = .037), and emotional well-being (F = 5.4, P = .031).

DISCUSSION

This study suggests that repeated courses of antibiotic treatment may result in objectively quantifiable cognitive improvement over a four-month interval among a group of patients each of whom had received more than the standard recommended course of antibiotic therapy previously. Further, the study suggests that for patients with Lyme encephalopathy, the IV route of delivery may be most effective, not only in producing dramatic cognitive improvement but also by enhancing energy and decreasing pain, resulting in better physical, social, and emotional functioning. These results are consistent with the observations of physicians who note that many patients with persistent symptoms appear to benefit from repeated courses of antibiotic therapy, a phenomenon supportive of the persistent infection hypothesis.

Based on comparison with published data using the same functional disability measure (Short-Form 36) among patients with other chronic diseases, the 23 CLD patients in this study were more functionally disabled than patients with congestive heart failure, hypertension, type 1 diabetes mellitus, and major depression. The energy/fatigue and freedom from pain scores among the Lyme patients were 2-3 times worse than the published scores among patients with the latter diseases. Role limitations because of physical health were particularly severe for the Lyme patients, with scores 4-8 times worse than patients with these other diseases. These results underscore the seriousness of CLD and the profound impact it has on patients’ lives.

Although this study did find marked group effects when comparing cognitive improvement among those who received antibiotics and those who did not, only in the subgroup analyses comparing patients who received IV antibiotics to all others did we find significant differences on the functional disability measures. This suggests that IV antibiotics may be particularly effective and that neuropsychological tests may be a more sensitive measure of change over time than self-report disability measures. Studies of patients with encephalopathy that rely on the
MOS-36SF as a major outcome measure may need much larger sample sizes and longer durations of follow-up to show differences between treated and untreated samples.

The majority of the patients in this study were not depressed. The group anxiety level was moderate in intensity. No significant relationship was found between amount of depression and anxiety at baseline and overall cognitive impairment. Nor did we find that the more depressed patients at baseline had the least amount of cognitive dysfunction, as had been found in an earlier study of patients with CLD. Contrary to the hypothesis that attributes many of the symptoms of CLD to somatization, anxiety and/or depression (i.e., a psychogenic hypothesis the majority of patients with CLD in our study were not suffering from significant levels of psychopathology. Further, patients who were more depressed or anxious were just as likely to respond to antibiotic therapy with an improvement in cognition as those who were less depressed or anxious.

Several factors need to be addressed regarding the limitations and strengths of this study. First, because we employed the same battery of neuropsychological tests separated by only four months, a repeated testing (practice) effect that artificially improved the Time 2 scores most likely occurred. A repeated testing effect, however, could not alone account for the marked improvement among the antibiotically-treated patients because comparable improvement was not noted among the 5 patients who received no treatment but who also were retested. The fact that the pattern of improvement sorted out differently for the treatments (IV > other or none) suggests that there was in fact improvement that could be attributed to the specific route of antibiotic delivery. This improvement might relate to the better CNS penetration provided by the IV route or to the drama of an invasive procedure. If the latter were true, one might expect that the patients who received IM injections would have shown greater improvement than the patients who received oral or no treatment because the IM group also was receiving a new and invasive treatment. This was not the case. Although we doubt that the drama of IV therapy alone could account for the marked cognitive and functional improvement noted in our small sample, only a placebo-controlled IV therapy study could prove this for certain.

Second, because of our small sample size, statistically significant differences between treatment groups at Time 1 and Time 2 would be hard to detect. The fact that significant differences did emerge from the Time 2 treatment subgroup analysis is surprising. However, definitive conclusions about the benefit of a specific route of antibiotic therapy cannot be made because the treatment selection was neither uniform nor randomly assigned. Further con-
one considers that the patients who received no antibiotics had the lowest mean cognitive z-score at baseline and their improvement was far more modest (2.8 SD).

Fourth, because of the time our study was designed, the laboratory criteria for inclusion made use of the pre-1994 CDC criteria of either a reactive ELISA or Western blot. The current CDC guidelines recommend retesting: an equivocal or a reactive ELISA is to be followed by a Western blot assay. If we examine our data comparing the historical laboratory results of patients who would be considered seropositive by this two-tiered method with patients whose results did not meet this two-tiered standard (using the more inclusive, varied, and less standardized Western blot criteria employed by the individual laboratories conducting the tests at that time), there is no difference in the cognitive change score between the two antibiologically-treated groups. In other words, the two-tiered method of laboratory testing did not help to identify patients who were more or less likely to respond to antibiotic therapy. Further, it should be noted that only 4 of the 19 serum samples were Western blot reactive, and each of these was a reactive IgM not an IgG Western blot. Of these 7 patients who received a repeated course of IV antibiotics, none had a reactive Western blot. Had these patients been denied treatment based on not having a currently positive Western blot result, these patients most likely would not have improved.

Fifth, because this was a small uncontrolled pilot study that did not have randomly assigned and blinded treatment assignment, no definitive conclusions can be drawn from this study. For example, the study results may have been adversely affected or skewed by the small numbers of patients, by the lack of a blinded IV placebo treatment, and by the fact that nonrandom treatment assignment raises the likelihood that extraneous confounding factors were present but not identified by us.

In summary, our pilot study suggests that repeated courses of antibiotic therapy, in particular when given intravenously, can be effective for patients with a history of Lyme disease who have persistent cognitive problems despite robust prior treatment. In addition, our study suggests that currently “seronegative” patients may be just as likely to respond to treatment as currently “seropositive” patients. These “suggestive” findings need to be tested by a placebo-controlled study using a larger sample size, randomized and uniform treatment assignment, blinded evaluators, and separate randomization of patients who meet the CDC’s current laboratory criteria for the diagnosis of Lyme disease and those who don’t.

ACKNOWLEDGMENT

The authors wish to thank Patricia Coyle, MD, for conducting the immune complex assays. Partial funding support for this study was provided by the Lyme Disease Association of New Jersey and a NYS Psychiatric Institute Research Support Grant.

REFERENCES

40. Wells KB, Stewart AL, Hays RD, Burnam A, Rogers W, Daniels M, Berry SD, Greenfield S, Ware JE. The functioning and well-being of depressed patients: results from the Medical Outcomes Study. JAMA 1989;262:914-919.

Antiphospholipid Antibody Syndrome and Lyme Disease:
A Possible Association

Kevin J. Cross, BS,* and Michael A. Patmas†, MD, MS, FACP

ABSTRACT

Antiphospholipid Antibody Syndrome (APS) and Lyme disease both result in affected patients having elevations in anticardiolipin antibodies (ACAS). The literature suggests that these antibodies lead to characteristic clinical findings in APS only, and have no clinical significance in Lyme disease. We present a patient who had symptoms suggestive of APS and elevated ACAS levels to support the diagnosis. Her antibody levels decreased upon treatment for Lyme disease, however, suggesting the symptoms were actually a result of a Lyme disease related elevation in her ACAS levels. The possible association between Lyme disease and APS warrants further research.

Key words: Lyme disease, Antiphospholipid Antibody Syndrome, anticardiolipin antibodies

Lyme disease is a multisystem infection caused by the spirochete Borrelia burgdorferi. Lipids on the surface of B burgdorferi may cross-react with IgM and IgG anticardiolipin antibodies (ACAS), causing elevations in the levels of one or both of these antibodies on ELISA screens. Antiphospholipid Antibody Syndrome (APS), an autoimmune mediated disease that is distinct from Lyme disease in its clinical presentation, also results in the elevation of these ACAS. In APS, the elevated level of ACAS has been linked to its clinical manifestations, which include cerebrovascular changes, thrombotic events, and spontaneous and recurrent abortions. To date, this has not been found to be the case when ACAS are high in patients with Lyme disease. Herein, we report a case of a patient with a longstanding documented diagnosis of APS in whom both elevated ACAS as well as clinical evidence of the disease existed. The patient was later found to have Lyme disease and underwent treatment for it. Surprisingly, during her antibiotic therapy, her ACAS fell to within normal limits, suggesting that these levels were most likely elevated because of the presence of B burgdorferi antigens and thus not a result of APS. This being the case, it is also likely that her clinical symptoms, originally attributed to APS, are also a result of Lyme disease related elevations of ACAS.

CASE REPORT

A 37-year-old white female was referred for treatment after she was found to have a positive Western blot, which met the Center for Disease Control and Prevention criteria for the diagnosis of Lyme disease. The patient reported the history of a successful pregnancy and delivery of a healthy child. A few years later two episodes of fetal wastage and miscarriages occurred, despite Heparin therapy during pregnancy. At that time, after testing positive for elevated levels of IgM and IgG ACAS, she was given the diagnosis of APS and referred to a hematologist for evaluation of the disease. Her hematologist tested her and found her to have Lyme disease.

Upon our questioning, the patient reported no recollection of a specific tick bite or erythema migrans rash and did not show clinical signs or symptoms of Lyme disease including joint pain, headaches, confusion, arthralgias,
myalgias, or disabling fatigue. She did, however, have
many risk factors for its acquisition. She grew up in and
now lives in areas endemic for Lyme disease and has fam-
ily members in other areas endemic for the disease. Her
husband works as a biologist in a nearby state park and
has had as many as 100 deer ticks on him after coming
home from work. He very likely could have acted as a
vector for the transmission of the tick to the patient.

The physical examination revealed a very pleasant,
healthy appearing woman. Her vital signs were stabie
and within normal limits. Her head, ears, eyes, nose, and
throat examinations were normal. Her cranial nerves
were intact and her neck was supple and without lym-
phadenopathy. The pulmonary examination was normal.
On cardiac examination, normal S1 and S2 were heard
without evidence of a gallop, murmur, or rub. Her abdo-
mal exam was normal without organomegaly, masses, or
tenderness. Her extremities were grossly normal. There
was no evidence of synovitis or effusions, and her joints
were mobile and without pain. Neurologic examination
did not reveal any lateralization, and her cutaneous ex-
amination was normal.

A laboratory evaluation resulted in a normal complete
blood count. The patient is blood type O and Rh negative.
Her coagulation profile was normal. Our blood test found
her antiphospholipid IgM levels to be positive at 13 MPL
units and her Lyme ELISA IgM and IgG levels to be at an
index of 1.33 and 1.37, respectively. She was Lupus anti-
coagulant negative, rheumatoid factor negative, micro
somal antibody negative, and antinuclear antibody nega-
tive. Although her Lyme Western blot IgG was negative,
her IgM Western blot was positive with bands noted at
66, 41, and 23 kd.

Based on the epidemiological risk factors and labora-
try results, the diagnosis of infection with *B burgdorferi*
was made. After declining intravenous antibiotic treat-
ment the patient was started on intramuscular Bicillin
injections at 1.2 million units IM every four weeks. Other
than a severe Jarisch-Herxheimer reaction, the drug thera-
py was tolerated well. After four months of IM injections,
the patient’s antcardiolipin IgM fell to 7 MPL units, and
after seven months of treatment, it was normal at 5 MPL
units. The IgM antibody levels have remained negative.

DISCUSSION

The literature states that patients whose antcardiolipin
antibody levels are elevated as a result of Lyme disease,
rarely, if ever, present with clinical symptoms like those
found in patients with APS elevated antcardiolipin anti-
body levels.4 In our patient, given her history and presen-
tation, this may not be the case. She had a healthy, full-
term delivery followed by two miscarriages. These mis-
carriages were temporally associated with elevated
ACAS. When the patient was later diagnosed with and
treated for Lyme disease, her antcardiolipin antibody lev-
els fell to within normal limits. Because of this, we
believe if indeed her miscarriages were a result of her
high ACAS, Lyme disease was the cause rather than APS.
Furthermore, we propose that like our patient, other
patients currently carrying the diagnosis of APS may
instead be suffering from Lyme disease masquerading as
APS. Further study should be done on the possible associ-
ation between Lyme disease and the symptoms of APS.
This could include the use of Lyme disease screening in
diagnosed APS patients who live in areas endemic for
Lyme disease, or the use of tests that distinguish autoim-
mune ACAS from nonautoimmune ACAS.2,5

REFERENCES

1. Mackworth-Young CG, Harris EN, Steere AC, Rizvi F, Malawista
 SE, Hughes GRV, Gharavi AE. Anticardiolipin antibodies in Lyme
2. Goel N. Antiphospholipid antibody syndrome: current concepts.
3. Duray PH, Steere AC. Clinical pathologic correlations of Lyme
 SA, Stanek G, Steere AC. Reactivity of neuroborreliosis patients (Lyme
5. Rouhey RA. Immunology of the Antiphospholipid Antibody
Rapid Susceptibility Testing of Lyme Disease Spirochetes by Flow Cytometry

Dean A. Jobe, MS*; Steven M. Callister, PhD*; Steven D. Lovrich, PhD; and Ronald F. Schell, PhD*$*

ABSTRACT

Flow cytometry has recently become an effective tool for rapidly determining antimicrobial susceptibilities of microorganisms pathogenic to humans. In this study, we developed an in vitro assay that used flow cytometry to detect rapidly (18 hours) the minimum bactericidal concentrations (MBC) of antimicrobial agents against several isolates of Borrelia burgdorferi sensu lato. Acridine orange fluorescence intensity and number of events were used to detect killed spirochetes incubated in Barbour-Stoener-Kelly (BSK) medium containing decreasing concentrations of antimicrobial agents. The flow cytometric susceptibility assay accurately predicted MBC values for amoxicillin (0.06 μg/mL), cefotaxime (0.06 μg/mL), ceftriaxone (0.03 μg/mL), doxycycline (0.25 μg/mL), and erythromycin (0.13 μg/mL). In addition, the flow cytometric procedure rapidly detected significant variations in MBC values among Borrelia isolates. We conclude that flow cytometry is a rapid and accurate method for determining MBC values of antimicrobial agents against B. burgdorferi sensu lato. Additionally, the use of flow cytometry will aid in the rapid evaluation of newly developed antimicrobial agents and provide a more accurate assessment of in vivo concentrations necessary to eliminate B. burgdorferi sensu lato infections.

Key words: Borrelia burgdorferi, flow cytometry, susceptibility testing

INTRODUCTION

Lyme borreliosis is the most common tick-associated illness in the world.1 This illness is acquired by humans through the bite of Ixodes species ticks2 infected with Borrelia burgdorferi sensu lato (Bb) (Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii). The clinical manifestations of early Lyme borreliosis, including constitutional symptoms such as fatigue, headache, mild stiff neck, arthralgias, myalgias, and fever, are often accompanied by a skin rash, erythema migrans.3,4 Persistence of Bb can lead to more severe clinical manifestations including secondary annular lesions, meningitis, Bell’s palsy, radiculoneuritis, and atrioventricular heart block.4,5 Furthermore, chronic arthritis may develop weeks to months after infection.4

The variability and occasionally protracted nature of Lyme borreliosis makes it difficult to assess the effectiveness of antimicrobial therapy. Optimal treatment regimens, particularly for patients with late-stage or persistent disease, are strongly debated because little is known about the pharmacodynamic interaction between the antimicrobial agent and Bb. In addition, the slow growth rate and fastidious nature of Bb organisms has hindered many investigations by delaying susceptibility testing by conventional methods. Furthermore, it is difficult to accurately determine the viability of Bb by darkfield microscopy, especially when spirochetes become clumped or exhibit impaired motility. In addition, interpretation of growth based on color change can be difficult. For instance, contaminating organisms can cause color changes in Barbour-Stoener-Kelly (BSK) medium, which would interfere with interpretation of endpoints.
Oxidation of BSK medium can also kill Bb organisms and produce falsely lowered susceptibility values. Collectively, these factors make conventional methods labor-intensive, time consuming, and difficult to interpret.

Recently, we showed that susceptibility testing of other slow-growing microorganisms such as *Mycobacterium tuberculosis*, *M. gordonae*, and *Candida albicans* could be rapidly accomplished by using flow cytometry. Results of tests were available in 24 hours or less. In this report, we show that flow cytometry can be used to detect rapidly (18 hours) the minimum bactericidal concentrations (MBC) of antimicrobial agents against Bb.

MATERIALS AND METHODS

Antimicrobial Agents

Amoxicillin and erythromycin (Sigma Chemical Co., St. Louis, MO); cefotaxime (Hoechst-Roussel Pharmaceuticals, Sommerville, NJ); ceftriaxone (Roche Laboratories, Belvidere, NJ); and doxycycline (Pfizer, Inc., Groton, CT) were obtained as standard powders and prepared according to the manufacturer or distributor recommendations. Stock solutions contained 3200 µg of each antimicrobial agent per milliliter of sterile distilled water.

Organisms

Bb isolates 297 (human spinal fluid, Connecticut); B31 (Lxodes scapularis, New York); B garinii isolates LV4 and PBI (human spinal fluid, Europe); B afzelii isolates J1 (Lxodes persulcatus, Japan); and BV1 (human blood, Europe) were cultured for 72 hours at 32°C in BSK medium to a concentration of 5 × 10⁷ spirochetes per milliliter. Then, 500 µL samples were dispensed into 1.5 mL sterile vials (Sarstedt Inc., Newton, NC), sealed, and stored at −70°C until used. When needed, a frozen suspension of spirochetes was thawed and used to inoculate fresh BSK. Spirochetes were enumerated using a Petroff-Hausser counting chamber.

Susceptibility Assays

Minimum bactericidal concentration values for 5 antimicrobial agents against isolates of Bb were determined by using a conventional macrodilution technique and flow cytometry. Briefly, freshly-prepared stock solutions of each antimicrobial agent were serially diluted (16 to 0.008 µg/mL) in fresh BSK medium. Log phase (72 hours) cultures of Bb isolates were diluted with fresh BSK to a final concentration of 10⁶ spirochetes per milliliter. For macrodilution assays, 2 mL of each Bb suspension were combined with 2 mL of each dilution of antimicrobial agent in sterile 13 × 100 mm polystyrene culture tubes (Becton-Dickinson, Lincoln Park, NJ) and incubated at 32°C for 7 days. For flow cytometric assays, 100 µL of each Bb suspension was combined with 100 µL of each dilution of antimicrobial agent in sterile 1.5 mL microcentrifuge tubes (Sarstedt) and incubated at 32°C for 18 hours. Minimum inhibitory concentration values against *Escherichia coli* ATCC 25922 and *Staphylococcus aureus* ATCC 29213 were determined using NCCLS guidelines to ensure appropriate activity of each antimicrobial agent.

Determination of Minimum Bactericidal Concentrations

Macrodilution. Suspensions of antimicrobial agents in which viable spirochetes could not be detected by using darkfield microscopy were subcultured (10% v/v) into 6 mL of BSK containing no antimicrobial agents and incubated for 7 days. The lowest concentration in which viable spirochetes could not be detected by using darkfield microscopy was considered the MBC. Nonmotile Bb organisms were considered nonviable. All assays were performed in duplicate.

Flow cytometry. Following 18 hours of incubation, 100 µL of each assay suspension was transferred into 12 × 75 mm polystyrene culture tubes (Fisher Scientific, Chicago, IL) containing 400 µL of 0.2 µm filter-sterilized phosphate buffered saline (PBS; 0.01 mol/L, pH 7.2) and 50 µL of acridine orange (AO) (5.4 × 10⁻⁹ mol/L). Suspensions were gently vortexed and data were acquired using a FACSscan single laser flow cytometer (Becton-Dickinson Immunocytometry Systems, San Jose, CA). Initially, viable Bb organisms were detected and differentiated from BSK particles by using side angle light scatter and AO fluorescence intensity parameters. Live gating was performed on dot plots of Bb organisms during data acquisition to exclude debris. Events were acquired for 60 to 90 seconds in the list mode. Fluorescence histograms for each sample were analyzed by using FACSscan LYSYS II software. Markers were established for viable Bb organisms based on their binding of AO. The intensity of AO fluorescence and the number of Bb (events) were used to detect bactericidal activity.

Growth Assays

Following flow cytometric analysis, Bb organisms contained in 100 µL of each assay suspension were collected by using 0.2 µm microcentrifuge filter units (Corning Costar Corp., Cambridge, MA) spun at 1500 rpm for 3 minutes. The filters were then washed with 500 µL of sterile PBS to remove residual antimicrobial agents. Following washing, the filters containing spirochetes were resuspended in 500 µL of fresh BSK medium and serially diluted (10-fold) to enumerate survivors. All cultures
were incubated for 14 days and examined periodically for the presence of motile spirochetes by using dark-field microscopy.

RESULTS

Detection of Bb by Flow Cytometry

Viable Bb organisms (Figure 1B) were easily detected and differentiated from particles in BSK medium (Figure 1A) by monitoring side angle light scatter and AO fluorescence intensity parameters. Few background particles were detected in BSK medium (Figure 1A). When Bb organisms were exposed to AO (Figure 1C), they were readily detected and differentiated from Bb organisms not exposed to AO (Figure 1B). When these experiments were repeated with other Bb isolates, similar results were obtained.

Establishment of Gates (regions) for Detection of Viable and Killed Bb

Subsequently, viable organisms were incubated in BSK containing 0.03 μg of ceftriaxone per milliliter. The mean channel of AO fluorescence intensity (MCF) for the ceftriaxone-treated spirochetes increased significantly (Figure 2B) compared with the MCF of AO fluorescence intensity of the drug-free control (Figure 2A). In addition, the number of Bb (events) in the sample treated with ceftriaxone (Figure 2D) was significantly less than the number of spirochetes in the drug-free control (Figure 2C). Similar results were obtained using 0.06 μg of amoxicillin per milliliter, 0.06 μg of cefotaxime per milliliter, 0.25 μg of doxycycline per milliliter, and 0.13 μg of erythromycin per milliliter. When isolates of B burgdorferi, B garinii, and B afzelii were exposed to these antimicrobial agents, uptake of AO by the drug-treated isolates of Bb was significantly more than the uptake of AO by the drug-free controls.

Determination of the Susceptibility of Bb to Antimicrobial Agents by Flow Cytometry

The effects of various concentrations of amoxicillin, cefotaxime, ceftriaxone, doxycycline, and erythromycin were determined based on the intensity of AO fluorescence and the number of Bb (events) after exposure to these antimicrobial agents for 18 hours. In general, the intensity of AO fluorescence increased rapidly when Bb were exposed to increasing concentrations of the antimicrobial agents, while the number of Bb (events) rapidly decreased (Figure 3 A-E). When the number of Bb (events) in samples decreased to approximately 10^3, viable spirochetes were not recovered by subculture to fresh BSK medium. The point at which the AO fluorescence intensity and events curves intersected approximated the MBC of each antimicrobial agent for Bb. These MBC values were 0.06 μg/mL for amoxicillin, 0.06 μg/mL for cefotaxime, 0.03 μg/mL for ceftriaxone, 0.25 μg/mL for doxycycline, and 0.13 μg/mL for erythromycin. The MBC's were confirmed by subculturing washed B burgdorferi 297 collected on filters. Results of subculturing experiments confirmed that B burgdorferi 297 organisms were killed (data not shown). These values correlated with conventional macrodilution MBCs, with the exception of amoxicillin. The conventional macrodilution MBC for amoxicillin was 16 μg/mL, while the flow cytometric MBC was only 0.06 μg/mL (Table 1). This was likely because of the breakdown of amoxicillin during the long incubation period required for the macrodilution method. Other investigators have shown significant
AO Fluorescence Intensity

Figure 2. Mean channel fluorescence (acridine orange (AO) fluorescence intensity) versus side angle light scatter of B burgdorferi in the absence (A) and presence (B) of 0.03 μg/mL ceftriaxone. The lower figures are histogram profiles of the dot plots (A and B).

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Minimum borreliacidal concentration (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>0.06</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.03</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>0.25</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Macrolidiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>16</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>0.04</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>0.50</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.06</td>
</tr>
</tbody>
</table>

* Similar results were obtained when other B burgdorferi sensu lato isolates were tested.

* Geometric mean of duplicate samples.

loss (>25%) of activity of doxycycline and ceftriaxone after 24 to 72 hours of incubation at 37°C.

Based on these results, an operational definition of susceptibility was established to distinguish changes in intensity of AO fluorescence and numbers of Bb (events), which would accurately predict the MBCs. If the intensity of AO fluorescence of the Bb culture containing antimicrobial agents was 40% more than the intensity of AO fluorescence obtained with the drug-free culture, the MBC was identified. Likewise, a 50% or more decrease in the number of Bb (events) also predicted the MBC. When these flow cytometric definitions were applied to five other isolates of Bb tested with these antimicrobial agents, the MBCs were identified (Table 2). The MBC values
obtained for each isolate were similar and corresponded closely with previously published results using conventional susceptibility testing methods. However, the flow cytometric procedure detected some significant differences in MBC values among different Bb isolates. For example, the MBC values of doxycycline against *B burgdorferi* B-31 was 0.13 μg/mL. In contrast, *B garinii* LV4 and *B afzelii* J1 had doxycycline MBC values of 4.0 μg/mL.

DISCUSSION

Conventional methods for determining MBCs rely on subjective observations to interpret end points and often require subculturing, subsurface plating, or dialysis culturing. The accuracy of these procedures suffers when organisms replicate slowly because of increased incubation times and the instability of antimicrobial agents. A flow cytometer is capable of simultaneously collecting quantitative and qualitative data by detecting individual cells. This allows for rapid and precise identification and characterization of cells contained within a heterogeneous population. In addition, the viability of microorganisms contained in a population can be determined by monitoring the uptake of fluorescent dyes. These characteristics of flow cytometry have led investigators to explore its use as an alternative approach to conventional susceptibility testing methods. Results of these studies
Table 2. Flow cytometric MBC values for five antimicrobial agents against B burgdorferi sensu stricto, B garinii, and B afzelii isolates.

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Minimum Borreliacidal Concentration* (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFT</td>
</tr>
<tr>
<td>B burgdorferi ss</td>
<td></td>
</tr>
<tr>
<td>B31</td>
<td>0.04</td>
</tr>
<tr>
<td>B garinii</td>
<td></td>
</tr>
<tr>
<td>LV4</td>
<td>0.02</td>
</tr>
<tr>
<td>PHi</td>
<td>0.04</td>
</tr>
<tr>
<td>B afzelii</td>
<td></td>
</tr>
<tr>
<td>BV1</td>
<td>0.08</td>
</tr>
<tr>
<td>J1</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*Geometric mean of duplicate samples.

Abbreviations: CFT = Ceftriaxone; CTX = Cefotaxime; DOX = Doxycycline; AMX = Amoxicillin; ERY = Erythromycin.

have demonstrated that flow cytometry is useful for determining the antimicrobial susceptibilities of slow-growing bacterial and fungal pathogens.7,10,15,18

In this investigation, we developed a flow cytometric procedure to determine MBCs of Bb more rapidly. The ability to obtain susceptibility results in 18 hours is a significant improvement over the 13 to 15 days required by conventional Bb susceptibility assays.11,12,20 By monitoring intensity of AO fluorescence and the number of Bb (events), flow cytometry could easily discriminate between living and nonviable Bb. Using a 40% increase in AO fluorescence intensity or a 50% decrease in the number of Bb (events) to predict MBCs appeared accurate. When concentrations of antimicrobial agents were below the MBC values, AO fluorescence intensity and the number of Bb (events) remained nearly identical to those values obtained with spirochetes incubated in drug-free BSK medium. Although testing of more isolates of Bb might fine tune the determination of cut-off values, these values are unlikely to differ significantly from our selected values.

In addition, the accuracy of susceptibility testing of Bb may improve by performing the flow cytometric assay. We detected significant variations in the MBCs of antimicrobial agents among several Bb isolates. The ability of flow cytometry to rapidly determine MBC concentrations of antimicrobial agents against Bb should improve the correlation between in vitro susceptibility results and clinical efficacy. This will be especially important when evaluating antimicrobial agents that are unstable in solution or have been newly developed as potential therapies for Lyme borreliosis. In addition, the ease and objectivity of the flow cytometric procedure makes it suitable for determining MBCs against large numbers of Bb isolates.

In conclusion, we demonstrated that susceptibility testing of Bb could be accomplished by using flow cytometry to monitor the uptake of AO and enumerate viable and killed Bb organisms in drug-free and antimicrobial agent-containing medium. Most importantly, the flow cytometric susceptibility test was rapid, reproducible, and simple to perform.

ACKNOWLEDGMENT

This work was supported by the Gundersen Lutheran Medical Foundation.

REFERENCES

Post Lyme Syndrome: Contrasts with Recovered Lyme Patients on Cognitive and Symptom Measures

Lauren B. Krupp, MD; Leigh E. Elkins, PhD; Patricia K. Coyle, MD; Dean A. Pollina, PhD; and David M. Masur, PhD

ABSTRACT

Post Lyme syndrome (PLS) is defined by symptom persistence following treatment of documented Lyme disease. Many of PLS symptoms suggest disturbance of the central nervous system (CNS). To further define this disorder and CNS effects, we compared 39 patients with PLS and 16 patients who recovered from Lyme disease on a quality of life inventory, symptom measures, and psychiatric interview. The two patient groups were also compared to healthy controls on a Lyme neuropsychological battery. Patients with PLS compared to recovered Lyme (RL) patients showed significant reductions in perceived health (P < .001), physical and role functioning (P < .001), social functioning (P < .01), elevated pain (P < .01), fatigue (P < .01), and disturbed sleep (P < .01) but did not differ in the life-time frequency of affective disorders. Relative to healthy controls, patients with PLS but not with RL showed deficits on measures of verbal memory (P < .05), verbal fluency (P < .05), attention (P < .01), and motor speed (P < .01). This study suggests that strategies aimed at symptom reduction, enhanced cognitive performance, and improved quality of life are critically important for this group of patients.

Key words: Lyme disease, encephalopathy, depression, quality of life

INTRODUCTION

Lyme disease, the most frequent vector borne infection in the United States, is a multisystemic disorder caused by the spirochete *Borrelia burgdorferi*. When Lyme disease is associated with localized infection and promptly treated, its course is often self-limited. However, in patients with disseminated disease or in cases where diagnosis and treatment are delayed, major neuropsychologic and psychiatric sequella can develop and persist post-treatment. However, the relation between the cognitive, sleep, and psychiatric abnormalities and the infection are controversial as is appropriate management.

This study sought to clarify the symptoms associated with chronic Lyme disease by focusing on a clearly defined patient group, those who met criteria for post Lyme syndrome (PLS). Post Lyme syndrome is defined as documented Lyme disease associated with persistent symptoms six or more months post treatment. Patients with PLS and two comparison groups underwent extensive evaluation to define the interrelation between cognitive impairments, psychological status and physical symptoms.

METHODS

Included in the study were 39 patients with PLS, 16 recovered Lyme disease (RL) patients, and 45 nonpatient healthy controls. PLS and RL patients were recruited from the Stony Brook University Hospital Lyme disease center and outpatient neurology practices, direct referrals from private practices in the tristate area (New York, New Jersey, Connecticut), and local community physicians seeking a second opinion regarding chronic Lyme disease.

All PLS and RL patients had documented histories of Lyme disease and were seropositive for *B burgdorferi* by ELISA and Western blot as performed at Stony Brook University Hospital laboratory. Patients from both groups had completed at least three weeks oral or parenteral antibiotic treatment for Lyme disease as currently recommended in review articles and practice guidelines. All subjects had completed antibiotic therapy six or more months prior to evaluation.
Post Lyme Syndrome Patients

There were 31 of the 39 patients with PLS who had Lyme disease histories and met CDC surveillance criteria for Lyme disease. The remaining 8 patients had histories of B burgdorferi infection and were diagnosed with Lyme disease by physicians with expertise in the disease. Of these 8 patients, 2 patients seroconverted from negative to positive for B burgdorferi antibodies during their acute illness. The other 6 were seropositive patients who developed arthralgia, myalgia, fever, and meningitis. Specific Lyme manifestations in the PLS sample included: documented erythema migrans (EM;16/39), cranial neuropathy (10/39), joint swelling (17/39), and meningitis (2/39). All patients with PLS complained of severe fatigue that had an onset that corresponded to their Lyme disease and reported good to excellent health prior to developing Lyme disease. Fatigue severity was measured with the Fatigue Severity Scale (FSS), a 9-item scale with scores ranging from 1.0 (no fatigue) to 7.0 (severe fatigue). All PLS patients scored > 4.0. Some of the psychometric findings on a subset of these patients and healthy controls has been previously reported.

Recovered Lyme Patients

Patients with RL disease met full CDC criteria in 16/16 of cases and considered themselves to be recovered. Their histories had the following specific Lyme manifestations: EM (14/16), cranial neuropathy (5/16), and migratory arthritis with observed joint swelling (5/16). Patients with RL reported no current fatigue and all scored 3.0 or less on the FSS.

Healthy Controls

For an additional comparison group, healthy volunteers from the community were recruited by advertisements in local papers. Potential subjects were screened by telephone interview and excluded if they reported a history of tick bite, were known to have positive serologies for B burgdorferi exposure, or had either Lyme disease or any other significant medical or psychiatric illness.

Inclusion criteria for all subjects were: 1) English as primary language, 2) completion of at least 10 years of education, and 3) an eighth-grade reading level or above. Exclusion criteria for all subjects were history of learning disorder or history of head trauma.

Measures

Symptom inventories. Patients with PLS and RL completed several self-report measures of relevant symptoms. For a general measure of health perceptions and quality of life, they completed the Medical Outcome Survey-Short Form (24, abbreviated form of the SF-36), a 24-item questionnaire with 6 subscales: pain, physical functioning, role functioning, social functioning, mental health, and perceived health. The SF-24 has well established reliability and validity and is widely used in medical populations. As noted above, fatigue was measured by the FSS and was part of the group inclusion criteria. The FSS has been shown to be reliable and identifies severe fatigue in a variety of illnesses. The Rand Vitality Index, a 4-item measure with scores inversely related to those from the FSS, was also included as a measure of energy level. To provide an index of subjective cognitive impairment, subjects were asked to rate their cognitive complaints as "none," "mild," "moderate," or "severe" as part of a general inventory of Lyme-related symptoms (Coyle PK, Krupp LB, unpublished data, 1997). Patients who reported problems with concentration or memory as moderate or severe symptoms were considered to have a positive response. Sleep disturbance was measured with a 9-item short form of the St. Mary's Sleep questionnaire (modified to provide a numerical score) addressing the subjective experience of the preceding night's sleep. Depressive symptoms were measured by the Center for Epidemiologic Studies Depression Scale (CES-D), a 20-item measure commonly used as a screening tool in medical populations (with a cutoff score of 16 or greater considered to indicate the possibility of depression). As a more general index of psychological distress, the Brief Symptom Inventory (BSI), a 50-item measure assessing a variety of psychiatric symptoms, was also administered. The global symptom severity score was derived from the sum of the items according to published guidelines.

Psychiatric interview. Of the 39 patients with PLS 37 patients and all patients with RL completed a structured psychiatric interview (Structured Clinical Interview for DSM-III-R or SCID; nonpatient version) to establish current and lifetime incidences of DSM-III-R Axis I diagnoses. All interviews were conducted on the day of neuropsychological evaluation by a Masters-level psychologist who had completed training in SCID administration.

Neuropsychological evaluation. All subjects completed a large battery of standardized neuropsychological tests administered by a trained psychologist. The testing battery lasted approximately 2½ to 3 hours, and patients were provided with rest periods as needed. The premorbid level of cognitive ability was estimated by the vocabulary subtests of the WAIS-R and the reading subtest of the Wide Range Achievement Test-revised (WRAT-R; also used to determine study eligibility as above). Next, two approaches were taken to characterize the potential cognitive deficits associated with PLS. First, the study groups were compared along individual neuropsychological measures selected based on previous demonstrations of their sensitivity to Lyme encephalopathy. Referred to here as the "Lyme Battery," these 9 selected measures consisted of the following: WAIS-R
Table 1. Self-reported symptoms in post Lyme syndrome and recovered Lyme controls.

<table>
<thead>
<tr>
<th></th>
<th>PLS (n=29)</th>
<th>RL (n=16)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain*</td>
<td>50 (22)</td>
<td>80 (23)</td>
<td><.01**</td>
</tr>
<tr>
<td>Fatigue</td>
<td>5.5 (0.9)</td>
<td>2.3 (1.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Vitality</td>
<td>11.4 (3.8)</td>
<td>19.4 (2.0)</td>
<td><.001</td>
</tr>
<tr>
<td>Depressive symptoms</td>
<td>17.5 (9.3)</td>
<td>4.1 (3.9)</td>
<td><.001</td>
</tr>
<tr>
<td>Cognitive impairment*</td>
<td>55%</td>
<td>12%</td>
<td><.01</td>
</tr>
<tr>
<td>Sleep disturbances</td>
<td>7 (6.7)</td>
<td>13.8 (3.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Current psychiatric diagnoses**</td>
<td>7/37 (19%)</td>
<td>1/16 (6%)</td>
<td>ns</td>
</tr>
<tr>
<td>Lifetime psychiatric diagnoses***</td>
<td>12/37 (32%)</td>
<td>2/16 (12%)</td>
<td>ns</td>
</tr>
</tbody>
</table>

*Compared by student t test unless otherwise indicated; **compared by Mann Whitney U test; ***compared by Fisher exact test. Measured by the pain subscale of the SF-24 (normative range 80–100), measured by the FSS (normative mean 2.1), measured by the Road Vitality Index, measured by the CES-D (normative mean 6.7), measured by the total symptom scores of the BSI measured by the Lyme symptom checklist, measured by modified version of the St Mary's Sleep questionnaire; *On these questionnaires data was missing on some patients due to a sample size of 34–36 in PLS cases and 13–15 in RL cases; **Since 2 patients did not undergo the entire psychiatric interview because of scheduling difficulties, their data were not included.

Table 2. Quality of life/perceived health in post Lyme and recovered Lyme disease.

<table>
<thead>
<tr>
<th></th>
<th>Post Lyme (n)</th>
<th>Recovered Lyme (n)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of life measure</td>
<td>35</td>
<td>14</td>
<td><.001</td>
</tr>
<tr>
<td>Physical functioning</td>
<td>66</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Role functioning</td>
<td>58</td>
<td>98</td>
<td><.001</td>
</tr>
<tr>
<td>Social functioning</td>
<td>65</td>
<td>99</td>
<td>.008</td>
</tr>
<tr>
<td>Mental health</td>
<td>74</td>
<td>92</td>
<td>ns</td>
</tr>
<tr>
<td>Perceived health</td>
<td>48</td>
<td>89</td>
<td><.001</td>
</tr>
</tbody>
</table>

Digit Span (attention),24 Trail Making Parts A and B (visuomotor search),26 Controlled Oral Word Association (COWA; verbal fluency),27 Finger Tapping Test (fine motor speed),26 Selective Reminding Test (SRT), 6 trial version (verbal learning and memory; sum recall and continuous long-term retrieval measures),28 Logical Memory subtest of the Wechsler Memory Scale-Revised (verbal memory; immediate recall score),29 and the Benton Visual Retention Test (BVRT; total number of errors).30

The second approach was to compare the study groups along one global rating of cognitive impairment. To obtain these ratings, a summary of test scores for each subject was provided to a clinical neuropsychologist (DM) along with the subject's age and years of education. Blind to diagnosis, he rated each of the profiles by determining the number of test scores that fell below the estimated level of premorbid functioning. Impairment was defined as the presence of four or more scores, one SD below estimated premorbid level of ability, or three or more tests two SD below estimated premorbid level of ability. This rating approach has been used in a variety of clinical populations and shown to be both sensitive and useful in comparisons of cognitive performance with other laboratory measures (eg, neuroimaging).31

RESULTS

Demographic Characteristics

The PLS patients had a mean of 44 (14.0) years of age, an average of 15 ± 2.3 years of education, and were 59% women. The RL patients had a mean of 50 ± 14.0 years of age, 15 ± 2.5 years of education, and were 35% women. Healthy controls had a mean of 46 ± 14.0 years of age, 15 ± 1.9 years of education, and were 71% women. Patients with PLS, RL, and the healthy controls significantly differed according to gender (more woman in PLS group), but not according to age or years of education.

Symptom Inventories

As shown in Table 1, the PLS and RL patients significantly differed on many of the symptom measures. PLS patients reported more sleep disturbances (P < .001), more depressive symptoms (P < .001), less vitality (P < .001), more pain (P < .01), greater psychological distress (P < .001), and more complaints of cognitive difficulty (P < .01). As shown in Table 2, compared to the patients with RL, patients with PLS also reported reduced quality of life on 5 of the 6 subscales of the SF-24 (physical functioning, P < .01; role functioning, P < .01; social functioning, P < .01; and perceived health, P < .01), with mental health functioning as the exception.

Psychiatric Diagnoses

There was not a significant difference between the PLS and RL patients in current or lifetime incidences of psychiatric diagnoses (shown in Table 1). In patients with PLS, 7 (19%) met current criteria for current DSM-III-R Axis I disorders: major depression (n=4), dysthymia (n=1), panic disorder (n=1), and social phobia (n=1). Patients with RL (6%) met current criteria for major depression. Lifetime criteria for Axis I disorders were met by 32% of patients with PLS and 12% of patients with RL.

Cognitive Functioning

Results of neuropsychological testing are shown in Table 3. There were no significant differences between the groups in estimated premorbid level of functioning (WAIS-R Vocabulary subtest and WRAT-R Reading subtest).

As shown in Table 3, the mean scores of the PLS patients on the measures of the Lyme Battery indicated
Table 3. Cognitive functioning in post Lyme syndrome, recovered Lyme, and non-patient healthy controls.

<table>
<thead>
<tr>
<th>TEST</th>
<th>Post Lyme Syndrome</th>
<th>Recovered Lyme</th>
<th>Healthy Controls</th>
<th>PLS vs Healthy Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD</td>
<td>Mean SD</td>
<td>Mean SD</td>
<td>P Value</td>
</tr>
<tr>
<td>Premorbid Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRAT-R reading</td>
<td>74.3 (10.2)</td>
<td>73.2 (9.6)</td>
<td>70.8 (8.7)</td>
<td>.12</td>
</tr>
<tr>
<td>WAIS-R vocabulary</td>
<td>11.7 (3.2)</td>
<td>12.8 (2.8)</td>
<td>12.1 (2.3)</td>
<td>.22</td>
</tr>
<tr>
<td>Lyme Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digit span</td>
<td>15.1 (4.1)</td>
<td>16.3 (4.9)</td>
<td>17.3 (3.7)</td>
<td><.01</td>
</tr>
<tr>
<td>SRT sum of recall</td>
<td>47.3 (8.5)</td>
<td>47.7 (10.8)</td>
<td>52.1 (6.3)</td>
<td><.01</td>
</tr>
<tr>
<td>SRT consistent recall</td>
<td>26.4 (12.2)</td>
<td>33.0 (16.4)</td>
<td>31.9 (13.3)</td>
<td>.07</td>
</tr>
<tr>
<td>Logical memory</td>
<td>23.6 (7.3)</td>
<td>26.6 (5.4)</td>
<td>27.1 (6.0)</td>
<td>.02</td>
</tr>
<tr>
<td>(immediate recall)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trail making part A</td>
<td>30.4 (2.4)</td>
<td>27.3 (10.6)</td>
<td>29.0 (14.8)</td>
<td>.18</td>
</tr>
<tr>
<td>Trail making part B</td>
<td>75.1 (33.5)</td>
<td>65.7 (27.7)</td>
<td>66.3 (23.8)</td>
<td>.13</td>
</tr>
<tr>
<td>Verbal fluency (COWA)</td>
<td>38.8 (12.3)</td>
<td>43.2 (12.9)</td>
<td>45.6 (10.9)</td>
<td>.02</td>
</tr>
<tr>
<td>Finger tapping</td>
<td>48.3 (10.2)</td>
<td>51.9 (11.8)</td>
<td>55.1 (10.2)</td>
<td><.01</td>
</tr>
<tr>
<td>(dominant hand)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benton visual Retention (errors)</td>
<td>2.7 (1.4)</td>
<td>2.1 (1.4)</td>
<td>2.2 (1.4)</td>
<td>.12</td>
</tr>
</tbody>
</table>

Compared by logistic regression controlling for age and education, only significant differences between PLS vs HO are shown; *Digit Span is from the WAIS-R, Sum of Recall and Consistent Recall are measures of the Selective Reminding Test (6 trial version), Logical Memory is from the Wechsler Memory Scale-Revised, Trail Making Parts A and B, and Finger Tapping are measures from the Halstead-Reitan Battery, Benton & errors is from the Benton Visual Retention Test.

consistently poorer performances relative to both comparison groups. These differences were significant between the PLS and healthy controls on 6 of 9 measures: WAIS-R Digit Span (P < .01); SRT sum of recall (P < .01); WMS-R Logical Memory (P < .05); COWA (P < .05); and finger tapping (P < .01). (Repeated analyses excluding the 8 PLS patients whose histories did not meet full CDC surveillance criteria for Lyme disease did not alter the significance of these results.) There were no significant differences between the PLS and RL groups or the RL and healthy controls.

Based on the clinical ratings described above, global cognitive impairment was identified in 58% of PLS patients, 25% of RL, and 11% of the healthy controls. Again, this difference was significant between the PLS and healthy controls (P < .001).

Inter-relationships Between Symptoms and Cognitive Functioning

Correlational analyses were performed on self-report data from the patients with PLS and RL and neuropsychological measures to explore possible associations. Neither sleep, depression, or fatigue was significantly correlated with the 6 neuropsychological measures that distinguished PLS and nonpatient controls. Pain was significantly correlated with SRT sum or recall (r = .39, P = .02), but not the other 5 cognitive measures.

DISCUSSION

The current findings indicate that PLS is characterized by a mild to moderate encephalopathy with relative deficits in measures of attention and verbal memory. These deficits can not be attributed to depression.

Several other studies have also documented cognitive dysfunction in untreated and partially treated patients with Lyme disease. For example, Benke et al demonstrated that disseminated Lyme and PLS cases have deficits in executive functioning, verbal fluency, and verbal memory. Other studies have demonstrated deficits in Lyme cases compared to subjects with depression and fibromyalgia. Bujak found deficits in patients with PLS compared to a group of recovered Lyme patients.

Unique to the current investigation was our exclusive focus on well defined post-treatment cases and the addition of an extensive psychological and physical symptom evaluation to the Lyme cognitive battery. Using a global rating, more than half of PLS cases met criteria for cognitive impairment. Another striking finding was the extent to which PLS patients reported impairments in quality of life. Based on the SF-36, patients with PLS indicated impaired physical functioning, social functioning, and perceived health compared to the patients with RL. Patients with PLS also reported greater sleep disturbances, cognitive loss, more pain, and heightened psychological distress compared to patients with RL. In fact it is their perception of poor
health attributed to Lyme disease that is one of the most salient features of the PLS group. While they do show greater global impairment relative to patients with RL, they did not significantly differ on the specific measures of the Lyme battery compared to the RL patients. Nonetheless, PLS patients perceived significantly greater cognitive difficulty relative to the RL group based on a subjective report.

Perceived poor health is often characteristic of elevated psychological distress and in fact 2 measures of psychological distress, the CES-D and BSI global symptom severity score were elevated in PLS compared to the RL patients. However, despite these significant group differences, there was not a significant group difference in current or lifetime incidence of DSM-III-R Axis I disorders, including major depression. Therefore, affective disorders alone can not be used to explain the elevated psychological distress nor the encephalopathy. That the psychological state of patients with PLS is linked in part to their somatic manifestations of fatigue, pain, and sleep disturbance is supported by the findings on the SF-36 in which all subscales of quality of life were impaired in the PLS group except mental functioning.

This study suggests that fatigue and associated symptoms of malaise are severe in PLS. Fatigue is also a prominent problem in CFS. However, as recently demonstrated by Gaudino et al., 17 the frequency of a lifetime psychiatric history of affective disorder is somewhat higher in CFS 18 than PLS while cognitive deficits appear more pronounced.

While prospective studies are in progress to explore the relative contribution of infectious, immune, and psychological factors in PLS, this study suggests that strategies aimed at symptom reduction and improved quality of life are critically important for this group of patients.

ACKNOWLEDGMENT

Presented in abstract form at the Academy of Neurology in Seattle, Washington, May 1995. This work was supported in part by grant RO1A131561 and NIH grants A131561 and PINS 3400092A.

REFERENCES

Tc-99m HMPAO Brain SPECT Imaging in Chronic Lyme Disease

Jeffery J. Plutchok, MD; Ronald S. Tikofsky, PhD; Kenneth B. Liegnier, MD; Janice M. Kochevar, FNP-C; Brian A. Fallon, MD; and Ronald L. Van Heertum, MD

ABSTRACT

Patients with Lyme disease may experience neuropsychiatric problems that persist even after standard courses of antibiotic therapy. Objective detection of neuroimaging brain abnormalities can be helpful to the clinician by demonstrating either focal or diffuse deficits, thereby supporting a CNS origin to the neuropsychiatric problems. To examine the potential utility of SPECT brain imaging in the evaluation of chronic Lyme disease (CLD), two questions were addressed: 1) Are SPECT brain scans abnormal in CLD patients with neuropsychiatric findings? and 2) If abnormal, are the perfusion abnormalities specific for CLD?

SPECT brain scans of 19 patients with CLD and 14 non-CLD patients with other neurological diagnoses resulting in perfusion abnormalities were evaluated in a blinded read without reference to clinical status. Scans were randomly ordered for interpretation by three experienced SPECT readers. Final interpretation was arrived at by consensus. Scans were interpreted as normal, abnormal-focal hypoperfusion, or abnormal-diffuse hypoperfusion. Hypoperfusion was described as homogenous or heterogenous. Results were analyzed as percent normal or abnormal and pattern of abnormality.

CLD SPECT scans were interpreted as abnormal in 14 of 19 (74%) scans, each characterized as heterogeneous with or without globally decreased perfusion. One CNS-LD scan showed a focal lesion. CLD patterns could be distinguished from non-LD patients with a diagnosis of Alzheimer’s or Moya-Moya disease but not from non-LD patients with a diagnosis of Creutzfeldt-Jacob disease, Lupus, cerebral vasculitis, or chronic fatigue syndrome. Of the 14 patients who had brain MRI scans, only 2 (14.3%) were abnormal, revealing white matter hyperintensities.

These findings suggest that brain SPECT may be a more sensitive tool than MRI for identifying brain abnormalities in CLD, but that the heterogeneous pattern is not specific to CLD.

Key words: Lyme disease, SPECT, brain imaging, perfusion

INTRODUCTION

Patients with chronic Lyme disease (CLD) may have persistent neuropsychiatric signs and symptoms. The identification of objective markers of brain involvement in this patient population is critical: a) to support the hypothesis that the neuropsychiatric problems are related to a diffuse brain disease; and b) to provide evidence of physiologic change that may correlate with reduced symptoms following treatment. A variety of imaging modalities including CT and MR have had limited value in the evaluation of CLD patients. SPECT brain imaging is a potential tool for establishing the presence of brain changes in these patients. In particular, if SPECT brain scans reveal perfusion abnormalities, then such findings would be helpful in establishing the physiological basis for the clinical presentation. Preliminary reports suggest that brain SPECT studies of patients with CLD who present with neurological and/or psychiatric complaints are often abnormal.

To examine the potential utility of SPECT brain imaging in the evaluation of the patient with CLD, we performed a retrospective study to address two questions.
First, do CLD patients with neurological and/or psychiatric findings have abnormal SPECT brain scans? Second, if SPECT scans are interpreted as abnormal, are the perfusion abnormalities specific for CLD?

MATERIALS AND METHODS

Subjects

Lyme disease patients. SPECT brain scans of 19 patients (mean 35.6 years, SE 2.8, 9M/10F) with a diagnosis of CLD who were referred to the Nuclear Medicine Division, Department of Radiology, New York Presbyterian Medical Center prior to 11/19/96 were evaluated in a blind read. The clinical work-up and diagnosis of CLD was made by the referring physicians.

Based on clinical records and examination the diagnosis of CLD was confirmed by ensuring that all patients met the following criteria: a) a multisystem illness affecting the neurologic, articular, cardiac, and/or dermatologic systems; b) a positive Western blot (IgG or IgM) for Lyme disease; and c) exposure to a Lyme endemic area. Patients in this sample had Western blot assays performed at one or both of the following two laboratories: BBI Clinical Laboratories (New Britain, CT) and/or University Medical Center Health Sciences Center, State University of New York at Stony Brook (Stony Brook, New York). The standard for Western blot interpretation varied depending upon the individual laboratory.

Chart review showed that each patient had constitutional, musculoskeletal, and neuropsychiatric symptoms. The most prominent complaints among the 19 patients were:

Constitutional—fatigue (100%), insomnia (52.6%), night sweats (26.3%).

Musculoskeletal—migrating large joint pains (84.2%), neck pain (52.6%), arthritis (15.8%).

Neuropsychiatric—cognitive complaints (eg, memory, attention) (94.7%), headache (89.5%), paresthesias (57.9%), tinnitus (57.9%), depression (52.6%), blurry vision (52.6%), photophobia (26.3%).

It was documented in the physician’s chart that 31.6% of the patients had an erythema migrans rash. Only 26.3% of the patients recalled a tick bite. All CLD patients in this study had undergone prior antibiotic treatment for Lyme disease. The majority of patients had been ill for more than a year before Lyme disease was diagnosed and treated (median 88 weeks).

MRI, EEG, CSF, and neuropsychological test data were available on some of the patients: 2 of 14 patients (14.3%) had abnormal brain MRIs (white matter hyperintensities); 1 of 8 patients had an abnormal EEG; 6 of 11 patients (54.5%) had abnormal spinal fluid (elevated protein, lymphocytosis, Borrelia burgdorferi PCR, and/or elevated Lyme titer). None of these 6 patients met criteria for intrathecal antibody production; 10 of the 19 patients had a battery of neuropsychological tests with each of the 10 individuals demonstrating clinically significant cognitive deficits.

Non-Lyme disease patients. SPECT brain images of 14 non-LD patients were selected from among the recent scans performed in the Nuclear Medicine Laboratory of the Nuclear Medicine Division of the Radiology Department at the New York-Presbyterian Hospital. These scans were interspersed among the scans obtained on the CLD patients as described below. Non-LD patients ranged in age from 29-47 years (mean 46 yrs). Clinical diagnoses in these patients were: presumed Alzheimer’s disease-2; cerebrovascular-4; chronic fatigue syndrome-3; Creutzfeldt-Jacobs disease (pathologically confirmed)-1; Lupus-2; and vascular insufficiency-2. The 3 patients with chronic fatigue syndrome were seronegative for Lyme disease according to the referring physician. Because this was a clinical series of scans, the medical work-up of these other 11 patients with other neurologic illnesses was unknown to us. In other words, we do not know whether or not these patients had been tested for Lyme disease.

SPECT Imaging Studies

Prior to their SPECT examination, LD patients were told not to use caffeine and nicotine for at least 2 hours prior to the study. Patients were administered an IV injection of Tc-99m-hexamethylpropyleneamine (Tc-99m-HMPAO) in doses ranging from 555 to 814 megabecquerels (15-22 millicuries) while in a supine position with eyes open in a low-stimulation environment. Imaging was begun 40 minutes post injection.

Images were acquired on a triple-headed SPECT camera (Picker Prism 3000, Cleveland, OH) following a previously validated rapid acquisition sequence (RAS) imaging protocol. The details of image acquisition and processing are described in the Appendix. Axial, coronal, and sagittal Picker light box images were reviewed using the Picker step-10 color scale. Studies were normalized to mean cerebellar counts. Background counts were set to the scalp activity (approximately 10% background subtraction). If cerebellar disease was evident then the study scale was normalized to the deep grey matter. The color scale was consistent across all patients.

Image Interpretation

The 33 SPECT brain scans (19 CLD and 14 non-LD patients) were randomly ordered for a blinded interpretation by 3 experienced SPECT readers (RVH, RST, JJP). Final interpretation was arrived at by consensus. No clinical information was available to the readers when the
images were subjected to interpretation. Scans were interpreted as normal if there were no areas of hypo/hyperperfusion. An area of abnormal perfusion was defined as nonanatomic cerebral hyperperfusion that was \(\leq 60\% \) of the cerebellar or deep grey matter perfusion. Perfusion abnormalities were defined as: a) focal if the hyperperfusion was confined to one brain lobe, or b) diffuse if more than one lobe showed hyperperfusion. Patterns of hyperperfusion are described as either homogenous or heterogeneous. A homogeneous pattern was defined as diffuse hyperperfusion throughout the cerebrum. A heterogeneous pattern was defined as multiple or diffuse areas of hyperperfusion interspersed with areas of normal perfusion.

Data Analysis

Results of the consensus read of the SPECT scans were subsequently analyzed to determine the percent of scans interpreted as normal or abnormal and types of abnormal patterns observed.

RESULTS

SPECT scans were interpreted as abnormal in 14 of the 19 (74%) patients with CLD. In 13 of the 14 patients, a SPECT scan pattern was characterized by diffuse cortical heterogeneity with or without globally decreased perfusion. A focal lesion was seen in 1 abnormal scan. The patterns in the CLD scans could not be accurately distinguished from the scan patterns observed in patients with Creutzfeldt-Jakobs disease (1/1 incorrect), Lupus (1/2 incorrect), cerebral vasculitis (2/4 incorrect), and chronic fatigue syndrome (3/3 incorrect). This heterogeneous pattern was not seen in the 2 Alzheimer’s patients and the patient with Moya-Moya disease. Representative SPECT scans for CLD and non-LD patients are shown in the Figure.

Of the 11 patients on whom CSF results were available, 6 had an abnormal CSF of whom 4 also had an abnormal SPECT, and 5 had a normal CSF of whom 4 had an abnormal SPECT. Of the 10 patients who had neuropsychological testing and who demonstrated cognitive deficits, 6 of the 10 had abnormal brain SPECT scans. Of the 14 patients on whom MRI results were available, 12 had normal brain MRIs but 9 of these 12 had abnormal SPECT scans.

DISCUSSION

Lyme disease is the most common vector-borne infectious disease in the United States. It is caused by the bacterium, *Borrelia burgdorferi*, a spirochete. The disease may cause acute-subacute (days to weeks), and chronic (months, years, and even decades) bouts of insidious, multisystem signs and symptoms of infection. The most commonly reported symptoms are musculoskeletal, dermatologic, neurologic, psychiatric, and cardiac.

Neurologic/psychiatric signs and symptoms may occur in up to 40% of patients shortly after infection. Neurologic findings may include Bell’s palsy, acute meningitis, acute encephalitis, or motor or sensory peripheral nervous dysfunction. Memory loss, inattention, slow processing speed, anxiety, depression, paranoia, and severe mood swings have been reported as neuropsychiatric manifestations of central nervous system involvement.

Reports suggest that not all patients with Lyme infection become seropositive. There is a need for “objective” tools to aid in diagnosis, and to gauge the efficacy of antibiotic therapy in patients with neuroborreliosis. Such tools include neuropsychological testing and noninvasive imaging procedures. MR imaging in CLD reveals a wide variety of noncortical abnormalities. Reports show that the percent MR abnormalities vary between 10% and 40% in LD patients with neurologic signs and symptoms. In our sample, 14.3% had abnormal MR scans, each demonstrating white matter hyperintensities. Although not a sensitive test in detecting abnormalities among patients with CLD, MRI is a very useful technique for excluding other diseases such as neoplasms, vascular or congenital malformations, and chronic extra-axial bleeds that could result in clinical presentations like those of CLD.

SPECT brain imaging is another noninvasive imaging modality that may have utility for assessing CNS involvement associated with Lyme disease. Das et al reported that 51.4% of 35 suspected CNS Lyme disease patients showed SPECT abnormalities. The pattern described was that of heterogenous decreased cortical perfusion in 83% of cases with abnormal scans. We report a similar finding, with 14/19 scans (74%) being abnormal. The most prominent pattern was that of a diffuse heterogeneous reduction of cortical perfusion. At the present time there is no satisfactory explanation for the pattern observed in LD. The cortical abnormalities seen on SPECT scans may represent a secondary response to involvement of subcortical white matter. These abnormalities may also be caused by vasculitis. Using quantitative brain SPECT analysis, reported multifocal white matter perfusion abnormalities in patients with LD.

The pattern of diffuse cortical heterogeneous hypoperfusion reported in the present study is similar to that seen in patients with Creutzfeldt-Jacob disease, primary cortical vasculitis, Lupus, and chronic fatigue syndrome. This pattern has also been reported for patients with AIDS infection and polysubstance abuse. However, the pattern is distinct from that of Alzheimer’s disease or the watershed hypoperfusion in Moya-Moya disease. In Alzheimer’s disease, for example, we would typically see decreased perfusion in the temporo-parietal regions of the brain in both hemispheres with sparing of the sensory-motor strip.
Figure. Representative examples of SPECT studies used in the blind read. (A) Alzheimer’s disease; (B) cerebral vasculitis; (C-1) baseline—Lyme disease patient; (C-2) same patient after treatment showing improvement; (D-1) baseline—Lyme disease patient; and (D-2) same patient after treatment whose condition worsened.
Our findings suggest that brain SPECT scans may be an objective and useful tool for visualizing the cortical changes that may be correlated with the central nervous system manifestations of Lyme disease. It must, however, be emphasized that the finding of a "normal" brain SPECT scan is not sufficient to "rule out" the presence of CNS Lyme disease. Likewise, an abnormal SPECT scan by itself does not suffice to establish a diagnosis of Lyme disease, but with other clinical and laboratory data may point to CNS involvement when the diagnosis of Lyme disease cannot be established by other means. Abnormalities revealed in the SPECT scans are not typically seen with standard anatomic imaging procedures such as MRI or CT.

Although a significant number of scans of the CLD patients revealed abnormalities, these abnormalities could not be distinguished from other disease entities that show diffuse heterogenous hypoperfusion. Our findings, therefore, demonstrate that SPECT brain imaging can be helpful in identifying the presence of a disease process that affects the brain diffusely, but the lack of specificity in the heterogeneous pattern limits its usefulness in distinguishing one diffuse brain disorder from another. Our study does not answer the question of whether brain SPECT scans can be used to differentiate patients with primary psychiatric disorders from patients with Lyme disease accompanied by secondary psychiatric disorders because none of our control patients had a primary psychiatric disorder as the main diagnosis.

This study by nature of its retrospective design has limitations that preclude definitive conclusions. For example, although we presumed that the non-Lyme disease patients did not have Lyme disease based on the referring physician’s clinical information, this is not certain given that we did not conduct Lyme tests on these patients. This issue is particularly problematic regarding patients with chronic fatigue syndrome whose symptom constellation is quite like that of patients with CLD. Although the referring physician assured us that patients with chronic fatigue syndrome had negative Lyme serologies, we still could not be certain that they did not have Lyme disease as the trigger to their chronic fatigue given the problems with serologic sensitivity in Lyme disease.

Further research, combining systematic neurologic/neuropsychologic testing with serial SPECT scanning is needed to further elucidate the role of SPECT scanning in Lyme disease and to assess the effects of various therapeutic interventions for CLD.

REFERENCES

APPENDIX

SPECT images were obtained by acquisition of four RAS data sets with a Leuhr-Fan beam collimators (Picker). Each data set was a 360° continuous mode. Acquisition was comprised of 120 total projection images (40 projection images per detector). The radius of rotation was equal to or less than 14 cm, with a hardware zoom-magnification factor of 1.0. Each projection image was 7.5 seconds with a total acquisition time of approximately 20 minutes. Axial images were aligned parallel with the canthomeatal line and the corona/sagittal planes were aligned perpendicular to the axial rotation of the camera.

Images were acquired into a 128 × 128 digital computer matrix. The four rapid acquisitions sequences were subsequently summed together and reconstructed with filtered backprojection and attenuation correction of 0.11 (Picker). A low-pass (Butterworth, Picker) filter was used with a fifth order slope and the cut-off frequency of 0.35-0.45 cycles per pixel. Single pixel width transaxial images were used to reconstruct the coronal and sagittal planes. All image planes were displayed as 3 pixel width (6.6 mm) thick slices. The SPECT system spatial resolution was 0.78 cm (FWHM).
Case Report: Lyme Disease and Complex Partial Seizures

Robert C. Bransfield, MD

ABSTRACT

A case of complex partial seizure disorder associated with late stage neuropsychiatric Lyme disease is presented. The patient showed a progressive development of somatic, cognitive, psychiatric, and neurologic symptoms. Reliance upon a conservative criteria for the interpretation of immunological testing caused an initial delay in diagnosis and treatment, resulting in more severe symptoms including a complex partial seizure disorder. Early diagnosis and treatment of Lyme disease is suggested to prevent the development of more severe sequelae, such as complex partial seizure disorder. When patients present with a complex partial seizure disorder and a multisystem illness, Lyme disease should be considered in the differential diagnosis.

Key words: seizures, Babesiosis, neuroborreliosis, cognitive

INTRODUCTION

Seizure disorders are sometimes a manifestation of late stage neuropsychiatric Lyme disease. There are a number of references to this association in the medical literature. A case history is presented to describe the emergence of a seizure disorder in association with late stage Lyme disease.

CASE REPORT

A 46-year-old female patient lived in a Lyme endemic area and recalled an incident in which she and her 8-year-old daughter sustained multiple tick bites at the same time approximately 5 years previously (the daughter was subsequently diagnosed with Lyme disease). The patient did not recall any ECM-like bulls eye rash or flu-like illness at the time. However, she noticed the gradual onset of increasing symptoms over the next two years which initially included arthralgias of the thumbs and aching hands bilaterally, night sweats, shortened menstrual cycles, insomnia, and unexplained irritability and anger.

Two years after the tick bite, the patient sprained her ankle and had difficulty healing from this injury. She also noted the uninjured ankle was hurting as well.

Following the ankle injury, there was a rapid increase in the development of symptoms including memory impairments; spelling difficulties; loss of executive functioning; becoming lost in familiar places; depression; numbness and tingling of the left side of her face; pain under her left eye; twitching of her left eye; tinnitus; ear pain; myoclonic jerks; jerking movements of the left shoulder; involuntary movements of her fingers, hands, arms, and legs; burning pain of her right hip; lower back pain on her right side; nerve pain; numbness and tingling of both legs; restless leg syndrome; a pulling in of the right foot followed by a jerking of the right leg; involuntary toe movement; chills; and fatigue.

She saw several physicians and had multiple diagnoses including an adjustment reaction from a fertility problem, multiple sclerosis, Huntington's, and moving toe and painful leg syndrome.

She was referred to a neurologist who ordered serology testing for *Borrelia burgdorferi* antibodies. A reactive enzyme immunoassay (1.11) was confirmed by repeat analysis (> 0.99 positive), IgM Western blot was reactive (39 and 41 kd bands), and IgG Western blot was interpreted as negative (23, 28, 41, 93 kd bands were present) by Smith Kline Becham Labs. The testing was considered negative since there were only four bands on the Western blot IgG.

A magnetic resonance imaging (MRI) scan was also negative. The strobe light during an electroencephalogram (EEG) resulted in a seizure-like episode. Although spikes were seen on the EEG, no seizure was recorded.

Dr. Bransfield is Associate Director of Psychiatry, Riverview Medical Center, Red Bank, New Jersey.

Address correspondence to Robert C. Bransfield, MD, 225 Highway #35, Red Bank, NJ 07701.
During a subsequent lumbar puncture, an apparent complex partial seizure occurred.

A second MRI scan a year later demonstrated scattered foci of abnormal signal within the periventricular white matter, more confluent in the parietal region. However, a second physician interpreted this MRI as normal.

Subsequently, a family physician diagnosed the patient with Lyme disease based upon clinical grounds and started treatment with intravenous ceftriaxone. A second seizure occurred during intravenous treatment. There was a significant clinical improvement with 10 weeks of intravenous treatment. After discontinuing the intravenous antibiotics, the patient relapsed and was treated with a second 10-week course of ceftriaxone. The patient again improved but more slowly. The patient recorded her symptoms and reported improvement of cognitive and emotional symptoms. After discontinuing the second course of intravenous antibiotics, there was a return of myoclonic jerks, and later seizure activity on a daily basis. Seizures were triggered by caffeine, light flickering through a row of trees on the highway, exercise, or during symptom flares associated with antibiotic treatment (apparent Jarish–Herxheimer reactions). They sometimes began with blurred vision, followed by increasing tinnitus, drowsiness, and a sense that her body was floating. During these episodes, her right arm stiffened accompanied by a twitching of her right toes, which progressed to her feet and calf muscles. The right foot then bent inward, and her legs began jerking. After her legs stopped jerking, her head turned from side to side as far as her head could turn. After the head movements stopped, her abdomen contracted as if doing sit-ups. These contractions forced the air out of her lungs. After several minutes, the seizures stopped. She felt tired after these episodes.

The patient was referred to another physician experienced in the evaluation and treatment of Lyme disease. The Lyme IgG/IgM antibody test was equivocal at 1.03 with a reactive cut off of 1.2. Lyme Western blot testing for IgM was positive with 23-25, 31, 37, 41, and 58 Kd bands. IgG was positive with 23-25, 28, 31, 34, 41, 58, 73, and 83 kD bands (Ingenex, Menlo Park, CA).

The Babesia microti IgM titer was negative, and the IgG titer was reactive at 1:80. There was a confirmation with positive B microti-in situ (RNA), multiple merozoites only (Ingenex). No blood smear was reported. Human granulocytic ehrlichiosis (HGE) titer was 1:40 for IgM and 1:80 for IgG. Human monocytic ehrlichiosis (HME) titer was 1:80 for IgM and 1:80 for IgG (Ingenex). The findings of the Babesia, HGE, and HME testing added support for the presence of tick-borne diseases. However, it should be noted that a negative blood smear and nonreactive IgM test of Babesia antibody does not support the diagnosis of acute babesiosis.

A psychiatric assessment performed 6 months after intravenous antibiotic treatment was discontinued demonstrated the following signs and symptoms: decreased ability to sustain attention span, decreased ability to allocate and prioritize attention, easily distracted by frustration, auditory hyperacusis, visual hyperacusis, decreased working memory, decreased short-term memory, slowness retrieving words and names, becoming lost in familiar locations, letter reversals, spelling errors, word substitution errors, depersonalization, poor concentration, “brain fog” (slowness and inaccuracy of processing), decreased capacity to plan and prioritize, obsessive thoughts, mental apathy, decreased frustration tolerance, sudden abrupt mood swings, exaggerated startle reflex (including acoustic startle), explosive anger, decreased social functioning, decreased job performance, family problems, compensatory compulsions, dropping objects from her hand, crying spells, depression, panic attacks, generalized anxiety, not well rested in the morning, mid and early insomnia accompanied by seizures, episodes of anorexia and weight loss, episodes of overeating accompanied by weight gain, decreased libido, decreased capacity for pleasure, menstrual irregularity, intolerance to cold, decreased body temperature (average 97.6°F), night sweats, chills, cervical radiculopathy, tension headaches, intolerance to bright light and fluorescent lights, conjunctivitis, eye pain, dry eyes, left sided Bell’s palsy, tinnitus, hearing loss, dizziness, low threshold for motion sickness, choking on food, absence and complex partial seizures, numbness, tingling, sensory loss, burning, stabbing sensations, paresis, tremor, twitching, muscle tightness, restless leg, myoclonic jerks, herniated discs, equivocal Rhomberg, a sensation of being bit by fleas, vibration sensations on the bottom of the feet, a sensation of an outer ear infection, tightness and crepitations of joints, periostitis of the right tibia, myalgia, tarsal tunnel syndrome, chest pain, racing pulse, shortness of breath, cough, sinusitis confirmed by MRI, recurrent urinary tract infections, and vaginal pain.

It was noted that the symptoms gradually progressed over a period of 5 years since the initial onset of the illness. Symptoms fluctuated throughout the day and were increased perimenstrually and by stress. Antibiotics initially increased these symptoms (including the seizures) followed by a subsequent improvement. Symptoms were noted to increase when antibiotics were stopped.

The patient has subsequently improved in response to a complex treatment approach. The current treatment is clarithromycin, paroxetine HCl, gabapentin, clonazepam, magnesium and B12 shots (one a week), and doxycycline 300 mg at dinner.
DISCUSSION

This patient presented with a systemic illness, and progressive development of increasing somatic neurological, cognitive, and psychiatric symptoms. Although the clinical signs and symptoms were compatible with a diagnosis of Lyme disease, and could not be explained by any other diagnostic entity, the diagnosis was not confirmed by the immunological criteria many consider necessary for the diagnosis of Lyme disease. The diagnosis of Lyme disease is based upon clinical grounds. However, laboratory testing may or may not confirm the diagnosis. This patient had some tests positive for 4 tick-borne diseases—Lyme disease, babesiosis, HME, and HGE. This suggests that the patient was exposed to tick-borne diseases. The question exists whether other unknown tick-borne diseases might also be present. The presence of these diseases might be considered coinfections. If there is a synergistic interaction between these microbes, it would be considered an interactive coinfection. However, it is difficult to demonstrate such interactions when the copresence of such microorganisms and their effect on the host is not well understood.

The patient had symptoms that could be compatible with babesiosis and some laboratory findings supported this diagnosis. However, there are no clearly defined chronic central nervous system symptoms associated with chronic babesiosis.

Babesiosis is noted to have similarities to malaria. Cerebral malaria has been extensively studied and is associated with a number of mental symptoms including seizures, depression, memory deficits, irritability, and aggression.18,19 Although the presence of both B microti and B burgdorferi cannot be proven, neither can one rule out the possibility that they contributed in some manner to the development of the seizures or other neuropsychiatric symptoms. Further investigation is needed in this area.

CONCLUSION

This case demonstrates the development of a complex partial seizure disorder in association with late stage neuropsychiatric Lyme disease. Early diagnosis and treatment is suggested to prevent the development of this and other manifestations of neuroborreliosis. Lyme disease should be considered in the assessment of patients presenting with the recent onset of a complex partial seizure disorder.

REFERENCES

Babesiosis

Kerber CE, et al.

Rosenblatt JE.

Ribeiro MF, et al.

Denes E, et al.

Machado RZ, et al.

Samuel T, et al.
Purification of a 28 kDa Babesia (Theileria) equi antigen and a 29 kDa spurious erythrocyte antigen from in vitro culture through ion exchange chromatography. Vet Parasitol. 1999 Sep 15;86(1):63-70.

Ambawat IJK, et al.

Soecke M, et al.

Gray JS, et al.

Bock RE, et al.

Bock RE, et al.

Stafford KC 3rd, et al.

Heuchert CM, et al.

Cockcroft PD.

Bashiruddin JB, et al.
Molecular detection of Babesia equi and Babesia caballi in horse blood by PCR amplification of part of the 16S rRNA gene. Vet Parasitol. 1999 Jul;84(1-2):75-83.

Solotorovska JL, et al.

Igarashi I, et al.

Hohenschulz S.

dos Santos CC, et al.

Hemmer RM, et al.
Endothelial cell changes are associated with pulmonary edema and respiratory distress in mice infected with the W1A human Babesia parasite. J Parasitol. 1999 Jun;85(3):479-89.

Carret C, et al.

O'Connor RM, et al.

Martin R.

Kappnieser LS, et al.

Katz JB, et al.

Eskow ES, et al.

Gubbels JM, et al.

Visser J, et al.
Hilton E, et al.

Goncalves PM, et al.

Erol E, et al.

Salem GH, et al.

Bromdon MA, et al.

Angus BM.

Birkenheuer AJ, et al.

Dobroszycki J, et al.

Hunfeld KP, et al.

Tsuij M, et al.

Comazzi S, et al.

Stich RW, et al.

Arsl A, et al.

Hove T, et al.
Isolation and characterization of a Babesia species from Rhipicephalus evertsi evertsi ticks picked off a sable antelope (Hippotragus niger) which died of acute babesiosis. Onderstepoort J Vet Res. 1998 Jun;65(2):75-80.

Ferrer D, et al.

Bonnet JT, et al.

Ferrer D, et al.

Hanafusa Y, et al.

COLORADO TICK FEVER
Norris DE, et al.

Attoui H, et al.

Attoui H, et al.

Trevejo RT, et al.

Attoui H, et al.

Norris DE, et al.

Zaki AM.

Dolan MC, et al.

Gage KL, et al.

Ryd RP Jr, et al.

Friedman AD.

McLeAn RG, et al.

EHRlichioSIOS

Pusterla N, et al.

Unver A, et al.

Protorsius AM, et al.

Bjoersdorff A, et al.
No [title available], Lakartidningen. 1999 Sep 29;96(39):4200-4.

Swedish: Olgman C.
Beyond Lyme: there’s a new tick-borne disease to worry about. Here’s what you need to know. Time. 1999 Jul 26;154(4):81. No abstract available.

Vredevoeck LK, et al.

French DM, et al.

Igbo J, et al.

Baugarten BU, et al.

Shultz LR, et al.

Swedish.

Postler N, et al.

McQuiston JJ, et al.

Arguin PM, et al.

No authors listed.

Leutenegger CM, et al.

Little SE, et al.

Roundtree SE, et al.

Foley JE, et al.

Childs JE, et al.

Martin GS, et al.

Ripoll CM, et al.

Scaglia F, et al.

Childs JE, et al.
Outcome of diagnostic tests using samples from patients with culture-proven human monocytic ehrlichiosis: implications for surveillance.

Walls JJ, et al.

Stafford KC 3rd, et al.

Harrus S, et al.

Wu JM, et al.

Drelo JA, et al.

Carpenter CF, et al.

Nut AK, et al.

Ravyn MD, et al.

Sainz A, et al.

Lafert H, et al.

Smilack JD.

dos Santos CC, et al.

Yu XJ, et al.

Munderloh UG, et al.

Goodman JL.

Buller RS, et al.

Foley JE, et al.

Barnett JE, et al.

Gokce HI, et al.
Lymphocyte responses to mitogens and rickettsial antigens in sheep experimentally infected with Ehrlichia (Cytoecetes) phagocytophila. Vet
Parasitol. 1999 Jun;183(1):55-64.
Berry DS, et al.
Ehrlichial meningitis with cerebrospinal fluid mononuc. Pediatr Infect
Johnson JR.
Recurrent human granulocytic ehrlichiosis and Lyme disease. Ann
Björkstorf A, et al.
Serological evidence of Ehrlichia infection in Swedish Lyme borre-
Schouls LM, et al.
Detection and identification of Ehrlichia, Borrelia burgdorferi sensu
lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin
Zhi N, et al.
Multiple p44 genes encoding major outer membrane proteins are
Hossain D, et al.
Clinical and laboratory evolution of a culture-confirmed case of
Frank JR, et al.
A retrospective study of ehrlichiosis in 62 dogs from North Carolina
Hunfeld KP, et al.
Prevalence of antibodies against the human granulocytic ehrlichiosis
agent in Lyme borreliosis patients from Germany. Eur J Clin Microbiol
Brouqui P.
Adaptation of the agent of the human monocytic ehrlichiosis
(Ehrlichia chaffeensis) to HL60. Am J Trop Med Hyg. 1999
Apr;60(4):518-9. No abstract available.
Prophet S.
Summary of ICD-9-CM Coordination and Maintenance Committee
meeting. J AHIMA. 1999 Feb;70(2):64-70; quiz 75-6. No abstract avail-
able.
Gongora-Biachi RA, et al.
First case of human ehrlichiosis in Mexico. Emerg Infect Dis. 1999
May-Jun;5(3):481. No abstract available.
Krupa W, et al.
Feld MW, et al.
Attachment sites of four tick species (Acaric: Ixodidae) parasitizing
humans in Georgia and South Carolina. J Med Entomol. 1999
May;36(3):361-4.
Ridley DC, et al.
Evaluation of an Improved PCR Diagnostic Assay for Human
Magnerelli LA, et al.
Serological testing of horses for granulocytic ehrlichiosis, using indi-
direct fluorescent antibody staining and immunoblot analysis. Am J Vet
Res. 1999 May;60(5):631-5.
Burnell JE, et al.
Infection of laboratory mice with the human granulocytic ehrlichio-
sis agent does not induce antibodies to diagnostically significant Borrelia
Waner T, et al.
Antibodies reactive with Ehrlichia canis, Ehrlichia phagocytophila
genegroup antigens and the spotted fever group rickettsial antigens, in
free-ranging jackals (Canis aureus syriacus) from Israel. Vet Parasitol.
Magnerelli LA, et al.
Infections of granulocytic ehrlichiae and Borrelia burgdorferi in
Magnerelli LA, et al.
Antibodies to granulocytic ehrlichiae in white-footed and cotton
Means J, et al.
Vanderbilt morning report. A 34-year-old man with fever and
Barnewall RE, et al.
Ehrlichia chaffeensis and E. senensis, but not the human granulocy-
etic ehrlichiosis agent, colocalize with transferrin receptor and up-regulate
transferrin receptor mRNA by activating iron-responsive protein 1.
Molecular cloning of the gene for a conserved major immunoreac-
tive 28-kilodalton protein of Ehrlichia canis: a potential serodiagnostic
Hilton E, et al.
Seroprevalence and seroconversion for tick-borne diseases in a high-
Levin ML, et al.
Disparity in the natural cycles of Borrelia burgdorferi and the agent
of human granulocytic ehrlichiosis. Emerg Infect Dis. 1999 Mar-
Apr;5(2):204-8.
Gokce HI, et al.
Differential haematological effects of tick-borne fever in sheep and
Gokce HI, et al.
The effects of Ehrlichia (Cytoecetes) phagocytophila on the clinical
chemistry of sheep and goats. Zentralbl Veterinarmed [B]. 1999
Mar;46(2):93-103.
Kwiatkowski VE, et al.
Infectious disease emergencies in primary care. Lippincotts Prim
Gokce HI, et al.
Inhibition of phagosome-lysosome fusion in ovine polymorphonu-
clear leucocytes by Ehrlichia (Cytoecetes) phagocytophila. J Comp
Pathol. 1999 May;120(4):369-81.
von Dobbenburgh A, et al.
Sumner JW, et al.
Molecular cloning and characterization of the Ehrlichia chaffeensis
variable-length PCR target: an antigen-expressing gene that exhibits
Pusterla N, et al.
Evidence of the human granulocytic ehrlichiosis agent in Ixodes rici-
Pusterla N, et al.
Quantitative real-time PCR for detection of members of the Ehrlichia
phagocytophilia genegroup in host animals and Ixodes ricinus ticks. J
Hsieh T, et al.
Changes in expression of the 44-kilodalton outer surface membrane
protein (p44 KD) for monitoring progression of infection and antimicro-
bial susceptibility of the human granulocytic ehrlichiosis (HGE) agent in
HL-60 cells. Biochem Biophys Res Commun. 1999 Apr 13;257(2):351-
5.
Prentiss AM, et al.
Serological survey for antibodies reactive with Ehrlichia canis and E.
chaffeensis in dogs from the Bloemfontein area, South Africa. J S Afr
Weaver RA, et al.
Ehrlichiosis with severe pulmonary manifestations despite early
Patel RG, et al.
Near fatal acute respiratory distress syndrome in a patient with
Björkstorf A, et al.
Feline granulocytic ehrlichiosis—a report of a new clinical entity
Fukayama I. [Ehrlichios]. Ryoikibetsu Shokogun Shirizu. 1999;23 Pt
1:104-6.
Brandsm RA, et al.
Novel Ehrlichia organism (Rickettsiales: Ehrlichiae) in white-tailed
deer associated with lone star tick (Acaris: Ixodidae) parasitism. J Med

De Geer P, et al.

Lillehook I, et al.

Pusterla N, et al.

Kawahara M, et al.

Rayvn MD, et al.

Bowie MV, et al.

Hufneld KP, et al.

Cinco M, et al.

Lortie-Poulain S, et al.

Guy E, et al.

Thomas DR, et al.

Whitt SP, et al.

Mart I, et al.

Kramer VL, et al.

Christova IS, et al.

Comer JA, et al.

Jernard D.

Grindem CB, et al.

Goodman JL, et al.

Stuen S, et al.

Lockhart JM, et al.

Waner T, et al.

Ogden NH, et al.

Edlow JA

Elston DM.

Baekken JS, et al.

Jabbari A, et al.

Sulczer AJ.

Nut M, et al.

Gothe R.

Herwick SM.

Ji J, et al.

Billings AN, et al.

Stuen S, et al.

Petrovec M, et al.

Comer JA, et al.

Baeken JS, et al.

Daniels TJ, et al.

Murphy GL, et al.

Moody EK, et al.

LYME DISEASE

Melik JW.

Felz MW, et al.

Lawrence MB, et al.

Liang FT, et al.

Sensitive and Specific Serodiagnosis of Lyme Disease by Enzyme-Linked Immunosorbent Assay with a Peptide Based on an Immunodominant Conserved Region of Borrelia burgdorferi VlsE. J Clin Microbiol. 1999 Dec;37(12):3990-3996.

Jossik KL.

Sharma-Toosi A, et al.

Dattwyler RJ, et al.

Blaauw AA, et al.

Liang FT, et al.

Germar J, et al.

Perkins NC, et al.

Feder HM Jr, et al.

[No authors listed]

Hayes EB, et al.

Reece RL.

Yang X, et al.

Hofmeister EK, et al.

Sood SK.

Pena CA, et al.

Donnell HD Jr.

[No authors listed]

Fork TP.

Aguero-Rosenfeld ME, et al.

Ijdo JW, et al.

Schutzer SE, et al.

Kelly B, et al.

Porco JC.

Chang Y, et al.

Fulhorn J, et al.

The Fibromyalgia Impact Questionnaire: a useful tool in evaluating patients with post-Lyme disease syndrome. Przybylski D.

Maje J.

Reyes Reyes F, et al.

Till SH, et al.

[No authors listed]

Mbou ML, et al.

Gerber MA.

Sikand VK, et al.

Encha-Rayazi F, et al.

Bastia J, et al.

Davidson MM, et al.

Kondrusik M, et al.

Wahlberg P.

Miller JL.

Childs JE, et al.

Brown EL, et al.

Wilson CJ.

Raman A.

Knight SW, et al.
Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A in borrelia burgdorferi. EMBO J. 1999 Sep 1;18(17):4875-81.

Hulitska D, et al.

Burkot TR, et al.

Zeman P, et al.

Zajkowska JM, et al.

Poucher KL, et al.

Ikushina M, et al.

Rusk M, et al.

Fedorov ES, et al.

Hirschfeld M, et al.

Straubinger RF, et al.

Van Hoecke C, et al.
Alternative vaccination schedules (0, 1, and 6 months versus 0, 1, and 12 months) for a recombinant OspA Lyme disease vaccine. Clin Infect Dis. 1999 Jun;28(6):1260-4.

Jungblut PR, et al.

Stafford KC 3rd, et al.

Kerksieke KM, et al.

PALACIOS R, et al.

Lewis C.

Oksi J, et al.

Robertson J, et al.

Batalla Celorio A, et al.

Wormser GP, et al.

Zajkowska JM, et al.

Barsic B.

Piesman J, et al.

Lakos A, et al.

Rosenfeld ME, et al.

Lindsay R, et al.

Zeman P, et al.

Loggins EL, et al.

Jacobson RM, et al.

Woodrum JE, et al.

Johnson JR.

Bjoerndorff A, et al.

Goossens HA, et al.

Kaiser K, et al.

Zuckert WR, et al.

Carroll JA, et al.

Rahn DW.

Pataraku K, et al.

[No authors listed]

Pachner AR, et al.

Knauer RH.

Hauer U, et al.

Obonyo M, et al.

Borrelia burgdorferi in tick cell culture modulates expression of outer surface proteins A and C in response to temperature. J Clin Medline Search

Hunfeld KP, et al.

Pichon B, et al.

Density of deer in relation to the prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus nymphs in Rambouillet forest, France. Exp Appl Acarol. 1999 Mar;23(3):267-75.
Gauthier DT, et al.

Sigal LI.

Hofmeister EK, et al.

Melzer MI, et al.

Edlow JA.

El Hage N, et al.

Bunikis J, et al.

Felz MW, et al.

Lane RS, et al.

Bertrand E, et al.

Swinford RW, et al.

Pena CA, et al.

Adams WV, et al.

Barbour AG.

Amemiya K, et al.

Bunnell JE, et al.

Limbach FX, et al.

Pahl A, et al.

Kohler A, et al.

Wan K, et al.

Chinese.

Suffridge PJ, et al.

Hovius KE, et al.

Presence and distribution of Borrelia burgdorferi sensu lato species in internal organs and skin of naturally infected symptomatic and asymptomatic dogs, as detected by polymerase chain reaction. Vet Q. 1999 Apr;21(2):54-8.
Rau J, et al.

Chou T.

Danielsen AG, et al.

Kufo E, et al.

Faul JL, et al.

Maguarel L, et al.

Arteaga Perez F, et al.

Nadelman RB, et al.

Hilton E, et al.

Eppes SC, et al.

Richert D, et al.

Fain O, et al.

Marshall E.

Antibody levels to recombinant tick calreticulin increase in humans after exposure to Ixodes scapularis (Say) and are correlated with tick engorgement indices. Am J Epidemiol. 1999 Apr 15;149(8):777-84.

Falco RC, et al.

Secco CA, et al.

Shoji H.

Koide S, et al.

Wormser GP.

Harter I, et al.

Landgraf S, et al.

Dotevall L, et al.

Ekereft C, et al.

Loewen PS, et al.

Hess A, et al.

Kim TH, et al.

Schmitt AB, et al.

Ozdemir FA, et al.

Graninger W.

Robb-Nicholson C.

Guo BP, et al.

Zhong W, et al.

Capps PA, et al.

Carlsson SA, et al.

Jaulhac B, et al.

Huisman TA, et al.

Kruischevikov VN.

Houman PM, et al.

de Jongh BM.

Hunfeld KP, et al.

Kraicy P, et al.

Straubinger RK, et al.

Pachner AR, et al.

Elia A, et al.

Rosa P, et al.

Gern L, et al.

Stanek G, et al.

Meier P, et al.

Thomas DR, et al.

Miller JI.

Zimmer W.

Akans DR, et al.

Tallington J, et al.

Hovius KE, et al.

Nielis JA, et al.

Grabenstein JD.

Probert WS, et al.

Kramer VL, et al.

Christova IS, et al.

Basta J, et al.

Lévis D, et al.

Gilmore RD Jr, et al.

Volkman D, et al.

Chodynicka B, et al.

Flisak K, et al.

Anguita J, et al.

Nightingale SL.

From the Food and Drug Administration. JAMA. 1999 Feb 3;281(5):408. No abstract available.

[No authors listed]

Hristea A, et al.

Matuschka FR, et al.

Davidson MM, et al.

Kaiser R, et al.

Tolarova V, et al.

Hogan P.

Kosinski M, et al.

Weis JD, et al.

Miyashiro MI, et al.

Dhote R, et al.

Balashov IS et al.

No abstract available.

Stef F, et al.

Appel MJ.

Carmichael LE.

Vidal C, et al.

Cabrál DA, et al.

Zhoua E, et al.

Schwarzenbach R, et al.

Kawagishi N, et al.

Wang IN, et al.

Jahangir A, et al.

Anderson JR.

Luger S.

Hayes BB, et al.

Waterman S, et al.

Oksi J, et al.

Nowling JM, et al.

Akin E, et al.

Barthold SW.

de Silva AM, et al.

Pavlovic DM.

Phillips SE, et al.

Chmielewska-Badora J.

Vanzeleghem B, et al.

Naumov RL, et al.

Sobieszezczska BM, et al.

Roman G.

Vidal V, et al.

Hassler D, et al.

Savcha VI, et al.

Ferguson H.

Chenery CL.

Saxen H, et al.

Shih CM, et al.

Muller B, et al.

POWASSAN ENCEPHALITIS

[No authors listed]

REЛАСПИНГ FEVER

Cosmans M, et al.
SPOTTED FEVER (INCLUDING ROCKY MOUNTAIN SPOTTED FEVER)

Uchiyama T.

Aharonowitz G, et al.

Breitschwerdt EB, et al.

Wesslen L, et al.

Swedish.

Roos KL.

Bleck TP.

Nilsson K, et al.

Drancourt M, et al.

Arguin PM, et al.

[No authors listed]

Zavala-Velasquez JE, et al.

Ripoll CM, et al.

Cohen J, et al.

Jenssen M, et al.

Elghetany MT, et al.

Carpenter CE, et al.

Tee TS, et al.

Okabayashi T, et al.

Wei SY, et al.

Paul JI, et al.

Rentia S, et al.

Andersson SG, et al.

Smilack JD.

Corner JA, et al.

Parola P, et al.

Abramson JS, et al.

Walker DH, et al.

Graves S, et al.

Felz MW, et al.

Winer T, et al.

Paddock CD, et al.

Hilton E, et al.

Kwitkowski VI, et al.

Agapepong MK.

Pujii T, et al.

Pujii T, et al.

Pujii T, et al.

Breitschwerdt EB, et al.

Ibrahim IN, et al.

Ezepeta D, et al.

Seaton DJ, et al.

Dvrage LA.

Grindem CB, et al.

Niecinski ML, et al.

Kimura M, et al.

Nilsson K, et al.

Kempf CA, et al.

Popivanova N, et al.

Thormer AR, et al.

Sulzer AJ.

Billings AN, et al.

Moody EK, et al.

Sekeyova Z, et al.

Stenson J, et al.

TICK PARALYSIS

Cameron RJ, et al.

Masina S, et al.

TULAREMIA

[No authors listed]

Fond L, et al.

Stepanov AV, et al.

Jonas WB.

Jassal DS, et al.

Hay A.

Hay A.

Naughton M, et al.

Adamian RT, et al.

Castron R, et al.

Manziuk IN, et al.

Rubio T, et al.

Bachiller Loque P, et al.

Iiukhin VI, et al.

Chocarro Martinez A, et al.

Castellote A, et al.

Cervicothoracic lesions in infants and children. Radiographics. 1999

Moody NK, et al.

WEST NILE

[No authors listed]

Emerging Diseases: West Nile Near the Hudson. Harv Health Lett. 1999 Dec;25(2):6-7. No abstract available. [Record as supplied by publisher]

[No authors listed]

[No authors listed]

Savage HM, et al.

Hubalek Z, et al.

Briese T, et al.

Hubalek Z, et al.

Wairagkar NK, et al.

Hubalek Z, et al.

Lundstrom JO.

Baba SS, et al.

Plitgo D, et al.

Proll S, et al.

Damlé RG, et al.

Baba SS, et al.

Han LF, et al.

Cernescu C, et al.

Ceausu E, et al.

Senol M, et al.

Edson RS, et al.

Review.

Novel J, et al.

Mena FJ, et al.

Boyko VN, et al.

Masuda G.

McGovern TW, et al.

Stennard S, et al.

[No authors listed]

Hubalek Z, et al.

Smego RA Jr, et al.

Elkins KL, et al.

Steinemann TL, et al.

Segarra Puchades P, et al.

Montejo M, et al.

Bachiller Luque P, et al.

Eiroa Bouza JM, et al.

Gurycova D.

Maradona Hidalgo JA, et al.

Zaluga E.

Billings AN, et al.

Chomel BB, et al.

Serological survey of selected canine viral pathogens and zoonoses.
BORRELLIA

Seino S, et al.
Felz MW, et al.
Ryffel K, et al.
Lawrence MB, et al.
Liang FT, et al.
Sensitive and Specific Serodiagnosis of Lyme Disease by Enzyme-Linked Immunosorbent Assay with a Peptide Based on an Immunodominant Conserved Region of Borrelia burgdorferi VlsE. J Clin Microbiol. 1999 Dec;37(12):3990-3996.
Matsumoto MT, et al.
Lien E, et al.
Shamoo-Toussi A, et al.
Dattwyler RJ, et al.
Blaauw AA, et al.
Coutur SJ, et al.
Masazawa T, et al.
Liang FT, et al.
Germier J, et al.
Feder HM Jr, et al.
Sigal LH.
Deng Z, et al.
Gera L, et al.
Oliver JH Jr, et al.
Ticks and antibodies to Borrelia burgdorferi from mammals at Cape Hatteras, NC and Assateague Island, MD and VA. J Med Entomol. 1999 Sep;36(5):578-87.
Panelius J, et al.
Rosati S, et al.
Yang X, et al.
Hofmeister EK, et al.
de Leeuw N, et al.
Pruck T, et al.
Orkan S, et al.
Aguero-Rosenfeld ME, et al.
Baumgarten BU, et al.
Schutzer SE, et al.
Chang Y, et al.
Goossens HA, et al.
Chen J, et al.
Casjens S.
Mbou ML, et al.
Gilmore RD Jr, et al.
Leutenegger CM, et al.

Osada Y, et al.

Korenberg EL, et al.

Basta J, et al.

Davidsson MM, et al.

Kondrusik M, et al.

Huang X, et al.

Wahlberg P.

Wikell SK.

Raoult D, et al.

Brown EL, et al.

Ramani A.

Knight SW, et al.

Natural synthesis of a DNA-binding protein from the C-terminal domain of DNA gyrase A in borrelia burgdorferi. EMBO J. 1999 Sep 1;18(17):4875-81.

Hulinska D, et al.

Burkot TR, et al.

Zajkowska JM, et al.

Pischmah M, et al.

Rusk M, et al.

Pennington PM, et al.

Skare JT, et al.

Hirschfeld M, et al.

Straubinger AF, et al.

Vun Hoecke C, et al.

Alternative vaccination schedules (0, 1, and 6 months versus 0, 1, and 2 months) for a recombinant OspA Lyme disease vaccine. Clin Infect Dis. 1999 Jun;28(6):1260-4.

Jungblut PR, et al.

Postic D, et al.

Stafford KC 3rd, et al.

Patelos R, et al.

Huper JH, et al.

Lewis C.

Oksi J, et al.

Robertson J, et al.

Batala Celorio A, et al.

Sellaii TJ, et al.

Wormser GP, et al.

Petersen I, et al.

Lakos A, et al.

Frossard E, et al.

Girschik HI, et al.
Saedkamp M, et al.

Cardiac myocytes of hearts from patients with end-stage dilated cardiomyopathy do not contain Borrelia burgdorferi DNA. Am Heart J. 1999 Aug;138(2 Pt 1):269-72.
Coffe MS, et al.

Rudenko N, et al.

Schoeller GB, et al.

Murakami I, et al.

A case of Lyme disease with the triad of neurologic manifestations (meningitis, radiculoneuritis, facial nerve palsy) and dermatitis of the nail roots. Rinsho Shinkeigaku. 1999 May;39(5):570-2, Japanese.
Bartunek P, et al.

Mazek V, et al.

Review, Czech.
Bellange A, et al.

[Recurrent fever and lymphocytic meningocephalitis after a stay in Africa: should one pay attention to a "negative" blood sample?] Rev Med Interne. 1999 Jun;20(6):540-1, French. No abstract available.
Kopecky J, et al.

Coleman JL, et al.

Mazek J, et al.

Mannelli A, et al.

Dushina TD, et al.

Druschk K, et al.

Schaskey CD, et al.

Evans J.

Hayney MS, et al.

Hobusch D, et al.

Welch DF, et al.

Wormser GP, et al.

Brown SL, et al.

vander Heijden IM, et al.

Polet JD, et al.

Zeman P, et al.

Hedstrom L.

Zhang R, et al.

Goldstein BM, et al.

Dever RL, et al.

Woodrum JF, et al.

Broson O, et al.

Kaiser R, et al.

Zuckert WR, et al.

Carroll JA, et al.

Rogers AB, et al.

Rahn DW.

Müller LA, et al.

Patarakul K, et al.

Recommendations for the use of Lyme disease vaccine.

Piescher AM, et al.

Kolsto AB.

Schumacher HR Jr, et al.

Knauer RH.

Hansen U, et al.

Schouls LM, et al.

Obonyo M, et al.

Jauris-Heipke S, et al.

Maragoni A, et al.

Jefferson T.

Hunfeld KP, et al.

Boyce K, et al.

Pichon B, et al.
Density of deer in relation to the prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus nymphs in Ramboulie forest, France. Exp Appl Acarol. 1999 Mar;23(3):267-75.

Aleksiev AN, et al.

Korenberg EL, et al.

Breier FH, et al.

Gauthier DT, et al.

Norris DE, et al.

Hofmister EK, et al.

Powell JJ, et al.

Chapel G, et al.

Meltzer MI, et al.

Edlow JA.

El Hage N, et al.

Bunikis J, et al.

Lane RS, et al.

Bertrand E, et al.

Wadstrom T, et al.

Pena CA, et al.

Grenze SR, et al.

Barbour AG.

Ariens K, et al.

Bannum JE, et al.

Limbach FX, et al.

van Dam AP, et al.

Pahl A, et al.

Wan K, et al.

Suffridge PJ, et al.

Brown CR, et al. Genetic control of experimental Lyme arthritis in the absence of spe-

Zhuou E, et al.

Velazquez JM, et al.

Layf B, et al.

Morrison TB, et al.

Gylfe, et al.

Grab DJ, et al.

Cordillo G, et al.

Humair PF, et al.

Pascual-Velasco F, et al.

Carlsson SA, et al.

Jaulhac B, et al.

Borron O, et al.

A rapid method for generating cystic forms of Borrelia burgdorferi, and their reversal to mobile spirochetes. APMIS. 1998 Dec;106(12):1121-41.

Aberer E, et al.

Huisman TA, et al.

Kruichevichikov VN.

Trofimov NM, et al.

Solasky CD, et al.

Houtman PM, et al.

De Jongh BM.

Hunfeld KP, et al.

Cinco M, et al.

Kracyz P, et al.

Wilske B, et al.

Straubinger RK, et al.

Puchner AR, et al.

Cinco M, et al.

Elias A, et al.

Rosa P, et al.

Gern L, et al.

Meier P, et al.

Guy E, et al.

Miller JL.

Demirkan I, et al.

Atkins DR, et al.

Thies FL, et al.

Talkington J, et al.

Hovius KE, et al.
Probert WS, et al.

Christova IS, et al.

Stunzner D, et al.

Heroldova M, et al.

Fikrig E, et al.

Roux V, et al.

Liveris D, et al.

Gilmour RD Jr, et al.

Frisiak R, et al.

Anguita J, et al.

Nightingale SL.

From the Food and Drug Administration. JAMA. 1999 Feb 3;281(5):408. No abstract available.
No authors listed.

Hristea A, et al.

Davidson MM, et al.

Kaiser R, et al.

Tolarova V, et al.

Bozovska S, et al.

Weis JJ, et al.

Calcott MJ, et al.

Miyashiro MJ, et al.

Dhote R, et al.

Neunhorner B.

Iba M, et al.

Balashov IV, et al.

Sirle F, et al.

von Orelli S, et al.

Gebbela JA, et al.

Zhioua E, et al.

Schwarzenbichl R, et al.

Kawagishi N, et al.

Wang JN, et al.

Steinman CR.

Mugro CM, et al.

Zeman P.

Jahngrin A, et al.

Lager S.

Waterman S, et al.

Bu Z, et al.

Nowling JM, et al.

Akin E, et al.

Gianhartolomi GH, et al.

Barthold SW.

de Silva AM, et al.

Pavlovic DM.

Shi L, et al.

Phillips SE, et al.

Chnielewsk-Badora J.

Vandielgehem B, et al.

Grigor'eva LA, et al.

Naumov RL, et al.

Sobieszczanska BM, et al.

Stefancikov A, et al.

Mertens E, et al.

McLean MJ, et al.

Vidal V, et al.

Hasler D, et al.

Shib CM, et al.

Wright SA, et al.

Daniels TJ, et al.

Woolf J, et al.

Sonck CE, et al.

Fingerle V, et al.

Vasilii V, et al.

Campbell GL, et al.

Arteaga F, et al.

Washio T, et al.
Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res. 1998 Dec 1;26(23):5456-63.

Leong JM, et al.

Mishan'kin BN, et al.

Ogden NH, et al.

Vincent MS, et al.

SPIROCHETES

Felz MW, et al.

Ohtama M, et al.

Shamaei-Tousi A, et al.

Dattwyler RJ, et al.

Umemoto T, et al.

Germer J, et al.
Quantitative Detection of Borrelia burgdorferi With a Microtiter-
Izard J, et al.

Yang X, et al.

Riviere GR, et al.

Falkler WA Jr, et al.

Estanislaw LB, et al.

Lee BJ, et al.

Casjens S.

Sanders EJ, et al.

Gilmore RD Jr, et al.

Walker SG, et al.

Kurzbaw GP, et al.

Leutenegger CM, et al.

Attye RF, et al.

Posey JE, et al.

Ko AI, et al.

Basta J, et al.

Davidson MM, et al.

Kondrusik M, et al.

Stamn L, et al.

Wahlberg P.

Pardi DC, et al.

Fiere DH, et al.

Childs JE, et al.

de la Pena-Moctezuma A, et al.

Brown EL, et al.

Ramani A.

Huulinska D, et al.

Barkow TR, et al.

Zajkowska JM, et al.

Guitian J, et al.

Bashima M, et al.

Sehgal SC, et al.

Rask M, et al.

Kalambaheti T, et al.

Arroll TW, et al.
T-Cell responses to Treponema pallidum subsp. pallidum antigens during the course of experimental syphilis infection. Infect Immun. 1999 Sep;67(9):4757-63.

Pennington PM, et al.

Shake JT, et al.

Blanco DR, et al.

Hirschfeld M, et al.

Beheis PM, et al.

Van Hoecke C, et al.
Alternative vaccination schedules (0, 1, and 6 months versus 0, 1, and 12 months) for a recombinant OspA Lyme disease vaccine. Clin Infect Dis. 1999 Jun;28(6):1260-4.

Jangblut PR, et al.

Jim LJ, et al.

Postic D, et al.

Smits HL, et al.

Sakamoto M, et al.

Lewis C.

Oksi J, et al.

Robertson J, et al.

Mavrov GI, et al.

Soder B, et al.

Sellati TJ, et al.

Blanco DR, et al.

Vormoor GP, et al.

Piesman J, et al.

Lakos A, et al.

Feaga WP.

Frosard E, et al.

Girschick HJ, et al.

Sucljak M, et al.
Cardiac myocytes of hearts from patients with end-stage dilated cardiomyopathy do not contain Borrelia burgdorferi DNA. Am Heart J. 1999 Aug;138(2 Pt 1):269-72.

Cuffe MS.

Gomes I, et al.
Human T lymphotrophic virus type I (HTLV-I) infection in neurological patients in Salvador, Bahia, Brazil, J Neurol Sci. 1999 May 1;165(1):84-9.

Peresu SB, et al.

Rudenko N, et al.

Trampel DW, et al.

Murakami I, et al.

Langoni H, et al.

Peirup C, et al.

Bartuneck P, et al.

Bellange A, et al.

Kopecky J, et al.

Caimano MJ, et al.

The Treponema denticola major sheath protein is predominantly periplasmic and has only limited surface exposure. Infect Immun. 1999 Aug;67(8):4072-83.

Coleman JL, et al.

McGowan AC, et al.

Mravek J, et al.

Mannelli A, et al.

Kaufklik SP, et al.

Hollmann R, et al.

Winkel EG, et al.

Druschky K, et al.

Sohaskey CD, et al.

Evans J.

Haynes MS, et al.

Hobusch D, et al.

Welch DF, et al.

Wormser GP, et al.

Brown SL, et al.

Lee YH, et al.

Cleary M, et al.

van der Heijden IM, et al.

Deka RK, et al.

Polet JD, et al.

Zeman P, et al.

van Steenberghe D, et al.

Quirynen M, et al.

Ayteo RF, et al.

Hedstrom L.

Zhang R, et al.

Goldstein BM, et al.

Dever LL, et al.

Woodruff JJ, et al.

McLaughlin R, et al.

Broson O, et al.

Kaiser R, et al.

Chi B, et al.

Lewinski MA, et al.

Zuckert WR, et al.

Carroll JA, et al.

Rogers AB, et al.

Wolzsecker-Kahr I, et al.

Rahn DW.

Miller LA, et al.

Patarakul K, et al.

[No authors listed]

Pochner AR, et al.

Limberger RJ, et al.

Contreras A, et al.

Kolts AB.

Haueter U, et al.

Scholz LM, et al.

Obonyo M, et al.

Jauris-Heilp S, et al.

Marangoni A, et al.

Jefferson T.

Hunfeld KP, et al.

Boyce K, et al.

Pichon B, et al.

Density of deer in relation to the prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus nymphs in Rambouillet forest, France. Exp Appl Acarol. 1999 Mar;23(3):267-75.

Alkseyev AN, et al.

Korenberg EI, et al.

Gauthier DT, et al.

Martinez Sanchez R, et al.

Norris DE, et al.

Bertherat E, et al.

Hofmeister EK, et al.

Schade SZ, et al.

Chael G, et al.

Hook EW 3rd.

Meltzer MI, et al.

Cameron CE, et al.

El Hage N, et al.

Bunikis J, et al.

Kesavala L, et al.

Lane RS, et al.

Bertrand E, et al.

Greene SR, et al.

Figue RM, et al.

Picard M, et al.

Siemann HD, et al.

Artiga Perez F, et al.

Levet PN.

Saenz Hernandez M, et al.

Schilling F, et al.

Sambri V, et al.

Shevelchenko DV, et al.

Membrane topology and cellular location of the Treponema pallidum glycoserephodiolide phosphodiesterase (GlpQ) ortholog. Infect Immun. 1999 May;67(5):2666-76.
Nadelman RB, et al.

Richter D, et al.

Levin ML, et al.

Wicher V, et al.

The time-dependent clearance of virulent Treponema pallidum in susceptible and resistant strains of guinea pigs is significantly different.
Sato T, et al.

Mumbu T, et al.

Madoff M, et al.

Juntila J, et al.

Grab DJ, et al.

Aikens IA, et al.

Humair PF, et al.

Pascual-Velasco F, et al.

Radolf JD, et al.

Carlsson SA, et al.

Jauliac B, et al.

Bresolin O, et al.
A rapid method for generating cystic forms of Borrelia burgdorferi, and their reversal to mobile spirochetes. APMSM. 1998 Dec;106(12):1311-41.

Aberer E, et al.

Huismann TA, et al.

Kluchinskikh VN, et al.

Trofimov NM, et al.

Sokolovsky CD, et al.

Houtman PM, et al.

do Jongh BM

Hunfeld KP, et al.

Kraczy P, et al.

Wilske B, et al.

Pachner AR, et al.

Cinco M, et al.

Elia A, et al.

Rosa P, et al.

Gern L, et al.

Meier P, et al.

Aberle-Grasse J, et al.

Cho MK, et al.

Guy E, et al.

Miller JL.

Demirkan L, et al.

Trujillo L, et al.

Hammond DJ, et al.

Heinemann MB, et al.

Schrank K, et al.

Akins DR, et al.

Baitikhi T, et al.

Talkington J, et al.
Hovius KE, et al.
Centurion-Lara A, et al.
Probert WS, et al.
Christova IS, et al.
Stunzner D, et al.
Heroldova M, et al.
Fikrig E, et al.
Willa SG, et al.
Roux V, et al.
Liveris D, et al.
Gilmore RD Jr, et al.
Flißak R, et al.
Nightingale SL.
From the Food and Drug Administration. JAMA. 1999 Feb 3;281(5):408. No abstract available.
Guarrneri F, et al.
Volina BG, et al.

[No authors listed]
Hristea A, et al.
Matuschka FR, et al.
Kalow CM, et al.
Suputtamongkol Y, et al.
Leadbetter JR, et al.
Hernandez-Aguado I, et al.
Heuner K, et al.
Davidson MM, et al.
Kaiser R, et al.
Jurczyk K, et al.
Tolarova V, et al.

TICKS

Pusterla N, et al.
Kerber CI, et al.
Dreyer K, et al.
Kopacec P, et al.
Nguyen SV, et al.
Masuzawa T, et al.
Gern L, et al.
D'Huys E, et al.
Chakka G, et al.
Randolph S.

Swedish.

Swedish.

Yoder JA, et al.
Rechav Y, et al.
Schrader C, et al.
Burkot TR, et al.
Fognan AC, et al.
Poucher KL, et al.
Ebel GD, et al.
Bock RF, et al.
Ostertag J, et al.
Chae JS, et al.
Lewis C.
He H, et al.
Piccirillo J, et al.
Lang JD.
Uspensky I.
Masina S, et al.
Del Pino FA, et al.
Schoeler GB, et al.
Faul JJ, et al.
Higuchi S, et al.
Higuchi S, et al.
Khalaf-Allah SS.
Plitgol D, et al.
Laefer H, et al.
Rojas R, et al.
Kopecky J, et al.
Mannelli A, et al.
Dremin VA, et al.
Dushina TD, et al.
Mulenga A, et al.
Hoshinscheidt S.
Muller MS, et al.
Evans J.
Haynes MS, et al.
Munderloh UG, et al.
Feng HP.
Goodman JL.
Buller RS, et al.
Ehrlichia ewingii, a newly recognized agent of human ehrlichiosis. N

Parola P, et al.

Cleary M, et al.

Lindsay R, et al.

Zeman P, et al.

Braz GR, et al.

Yerushalmi I, et al.

Arthropod parasites of Nubian ibexes (Capra ibex nubiana) and gazelles (Gazella gazella) in Israel. Vet Parasitol. 1999 Jun 15;83(2):167-73.

Peter TF, et al.

Woodrum JE, et al.

Panciera RJ, et al.

Christe M, et al.

Influence of the genetic background and parasite load of mice on the immune response developed against nymphs of Ixodes ricinus. Parasitol Res. 1999 Jul;85(7):557-61.

Estrella-Pena A, et al.

Baxter GD, et al.

Liyou N, et al.

Malenga A, et al.

Knober T, et al.

Regeeh AB, et al.

Baczek A, et al.

Martin R.

Campbell NJ, et al.

Schouls LM, et al.

Oonono M, et al.

Pascen GC, et al.

Cruz-Vazquez C, et al.

Pichon B, et al.

Density of deer in relation to the prevalence of Borrelia burgdorferi s.l. in Ixodes ricinus nymphs in Rambouillet forest, France. Exp Appl Acarol. 1999 Mar;23(3):267-75.

Fernandez-Ruvalcaba M, et al.

Anti-tick effects of Stylosanthes humilis and Stylosanthes hamata on plots experimentally infested with Boophilus microplus larvae in Morelos, Mexico. Exp Appl Acarol. 1999 Feb;23(2):171-5.

Aleksseen AN, et al.

Auigoux DH, et al.

Korenberg EJ, et al.

Allsopp MT, et al.

Okello-Onen J, et al.

Norris DE, et al.

Hofmeister EK, et al.

Leemans I, et al.

Leemans I, et al.

Melenzde RD, et al.

Enos G.

Edlow JA.

Krupa W, et al.
Ginsberg HS, et al.
Sigel MD, et al.
Folz MW, et al.
Lane RS, et al.
Stiller D, et al.
Kollars TM Jr, et al.
Lindsay LR, et al.
Lindsay LR, et al.
Carroll JF, et al.
Lacombe EH, et al.
Swimfar RW, et al.
Crampton AL, et al.
Sako Y, et al.
Weber DJ, et al.
Meggs WJ.
Shaw MK.
Theileria parva: sporozoite entry into bovine lymphocytes is not dependent on the parasite cytoskeleton, Exp Parasitol. 1999 May;82(2):24-31.
Barbour AG.
Mooring MS, et al.
Gubbels JM, et al.
Wan K, et al.
Suffridge PJ, et al.
Ferreira BR, et al.
Magnarelli LA, et al.
Faye O, et al.
Hilton E, et al.
Goncalves PM, et al.
Murrell A, et al.
Richter D, et al.
Levin ML, et al.
Basset-Schme D, et al.
McCoy KD, et al.
Bergstrom S, et al.
Sanders ML, et al.
Antibody levels to recombinant tick calreticulin increase in humans after exposure to Ixodes scapularis (Say) and are correlated with tick engorgement indices. Am J Epidemiol. 1999 Apr 15;149(8):777-84.
Pulce RC, et al.
Franc M, et al.
Sumner JW, et al.
Junttila J, et al.
Prevalence of Borrelia burgdorferi in Ixodes ricinus ticks in urban recreational areas of Helsinki, J Clin Microbiol. 1999 May;37(5):1361-5.
Pusterla N, et al.
Evidence of the human granulocytic ehrlichiosis agent in Ixodes ricini.

Pasterla N, et al.

Uchikawa K.

Lee R, et al.

Mantlo RC, et al.

Debson SJ, et al.

Balsalobre J, et al.

Berdyev AB.

Kim TH, et al.

Ibrahim IN, et al.

Ozdemir FA, et al.

Peh J, et al.

Ibrahim MA.

Goo BP, et al.

Zhong W, et al.

Wei A, et al.

Kawabata M.

Mulenga A, et al.

Daniel M, et al.

Kocisova A, et al.

Zhoua E, et al.

Carroll JF.

Brandtma AR, et al.

Desvenues F, et al.

Inokuma H, et al.

Kumar R, et al.

Effects of experimentally induced Theileria annulata infection on the pharmacokinetics of oxytetracycline in cross-bred calves. Vet Res. 1999 Jan-Feb;30(1):75-86.

Velazquez JM, et al.

Coosemans M, et al.

Rurangirwe FR, et al.

Kawahara M, et al.

Gyfte, et al.

Raydon MV, et al.

Kocan AA, et al.

Borges LM, et al.

Mao H, et al.

Humair PF, et al.

Pascual-Velasco F, et al.

Branch S, et al.

Interferon-induced human MxA GTPase blocks nuclear import of
Rizantsova GA, et al.
Trotsinov NM, et al.
Razumova IV.
Freisse JE.
Pruett JH.
Hubalek Z, et al.
Francisella tularensis in Dermacentor reticulatus ticks from the Czech Republic and Austria. Wien Klin Wochenschr. 1998 Dec;110(24):909-10.
Cinco M, et al.
Straubinger RK, et al.
Elias A, et al.
Gern L, et al.
Murray M.
Guy E, et al.
Thomas DR, et al.
Peter TF, et al.
Randolph SE, et al.
Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology. 1999 Feb;113 (Pt 2):177-86.
Lodovico L, et al.
Minjauw B, et al.
Samish M, et al.
Hovius KE, et al.
Kramer VI, et al.
Christova IS, et al.
Basta J, et al.
Stumzena D, et al.
Heroldova M, et al.
Fikrig E, et al.
Benival RK, et al.
Pinn TG, et al.
Estrada-Pena A.
Hristea A, et al.
[The epidemiology of Lyme borreliosis].
Romanian.
Gurycova D.
Niebylski ML, et al.
Matuschka FR, et al.
Gonzalez JP, et al.
Robins RG, et al.
Lampo M, et al.
Hill DE.

Davidson MM, et al.

El Kady GA.

Singh A, et al.

Balasov Ius, et al.

Joubert AM, et al.

Carmichael I.E.

Nilsson K, et al.

Mao H, et al.

Ogden NH, et al.

George JE, et al.

Zhiaoua E, et al.

Arai S, et al.

Mathew JS, et al.

Gambel JM, et al.

Elston DM.

Wang IN, et al.

Zeman P.

Chang JY.

Nut N, et al.

Black WC 4th, et al.

Barbel AF, et al.

Barhold SW.

de Silva AM, et al.

Jonsson NN, et al.

Orzeszkak A, et al.

Talbert A, et al.

Chmielewska-Badarja J.

Cisak E, et al.

Grigotova LA, et al.

Naumov RL, et al.

Gothe R.

Billinge AN, et al.

Petrovec M, et al.

Stefanikov A, et al.

Horak IG, et al.

Peter TF, et al.

Tice GA, et al.

The absence of clinical disease in cattle in communal grazing areas where farmers are changing from an intensive dipping programme to one of endemic stability to tick-borne diseases. Onderstepoort J Vet Res, 1998 Sep;65(3):169-75.

Ziegler U, et al.

INFORMATION FOR AUTHORS
AND EDITORIAL POLICY

The following guidelines are in accordance with the “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” and the International Committee of Medical Journal Editors (the “Vancouver Group”) statement, agreed at the January 1993 Meeting.

The *Journal of Spirochetal and Tick-borne Diseases* publishes quarterly reviews and original work studies about any aspect of spirochetal and tick-borne diseases. The primary purpose is to broaden our understanding of spirochetal and tick-borne diseases. Special focus is given to Lyme borreliosis (also known as Lyme disease), as the most prevalent spirochetal and tick-borne disease. The clinical topics may involve all medical disciplines, nursing, and pharmacy, as well as the social, ethical, and biological features of spirochetal and tick-borne diseases.

Reviews

Each issue includes a series of state-of-the-art articles on a topic related to spirochetal and tick-borne diseases. The articles represent invited presentation by authorities in the field on topics related to spirochetal and tick-borne diseases, with an emphasis on Lyme borreliosis.

Submissions to this category should present a comprehensive state-of-the-art analysis and should be accompanied by an abstract of 300 words or less summarizing major points.

Peer Review Articles

Original articles of 5000 words or less may be submitted to the editorial office. Each article should be accompanied by an abstract of 300 words or less describing the findings of the original research. All articles will be peer reviewed within a 3-week period with subsequent notification to the authors within 5 weeks of submission.

Case Reports

Specific clinical case reports describing a unique approach to Lyme disease and other related disorders in the area of diagnosis or treatment may be submitted for review. An abstract of 250 words or less should accompany the text.

Photographic Section

The topical photographic section will be a regular feature. Photographs pertinent to articles presented in the Journal, as well as other photographs related to any aspect of spirochetal or tick-borne diseases, will be considered for the publication. The guidelines for the submission are designated in *Illustrations*.

Conflict of Interest

The Journal asks authors to disclose at the time of submission any financial or other arrangements they may have with a company whose product figures in the submitted manuscript or with a company making a competing product. Such information will be held in confidence while the paper is under review and will not influence the editorial decision, but if the article is accepted for publication, the editors will discuss with the authors the manner in which such information is to be communicated to the reader.

Submission of Manuscript

An original and three copies of the manuscript should be submitted to:

Journal of Spirochetal and Tick-borne Diseases
SLACK Incorporated
6900 Grove Road
Thorofare, NJ 08086

Manuscripts containing original material are accepted with the understanding that neither the article nor any
part of its essential substance has been or will be published or submitted for publication elsewhere before appearing in the Journal.

All manuscripts should be accompanied by a letter of copyright transmittal. This must be signed and dated by all authors. The letter is required before any manuscript can be considered for publication and should contain the following wording:

"In consideration of The Lyme Disease Foundation taking action in editing my (our) submission, the author(s) undersigned hereby transfers, assigns, or otherwise conveys all copyright ownership to The Lyme Disease Foundation. The copyright so conveyed includes any and all subsidiary forms of publication, such as electronic media. The author(s) declares that the manuscript contains no matter that is, to the best of the author’s knowledge, libelous or unlawful, or that infringes upon any U.S. copyright."

All manuscripts should be submitted with a cover letter indicating the category for which the manuscript should be reviewed. Copies of any closely related manuscripts should be submitted to the Editor along with the manuscript that is to be considered by the journal.

Titles and Author’s Names

With the manuscript, provide a page giving the title of the article; titles should be concise and descriptive (not declarative). Also include a running head of fewer than 40 letter spaces; the name(s) of the author(s), including the first name(s) and academic degree(s); the name of the department and institution in which the work was done; the institutional affiliation of each author; and the name and address of the author to whom reprint requests should be addressed. Any grant support that requires acknowledgment should be mentioned on this page.

Abstract

Provide on a separate page an abstract of not more than 300 words (original and review articles) or 250 words (case report). This abstract should consist of four paragraphs, labeled Background, Methods, Results, and Conclusion. They should briefly describe the problem being addressed in the study, how the study was performed, the results, and what the authors conclude from the results.

Text

All material should be typed and double-spaced. Standard sequence of methods and materials, results, and discussion should be employed with tables and figures numbered in the order in which they are cited in the text. A disk in text format should accompany this.

Tables

Submit tables typed and double-spaced and provide a heading for all columns with a comprehensive title on separate sheets. A disk copy with a separate file for each table should be on the disk containing the text.

Illustrations

Photographs and figures should be submitted as glossy prints 5×7 in., with one copy of each print for each copy of the manuscript. Figure legends should be provided on a separate sheet with identification of the figure. The back of the glossy print should indicate the number of the figure.

References

References should be numbered in order of citation in the text, following the American Medical Association guidelines for references. The standard journal abbreviations from *Index Medicus* should be followed. Numbered references to personal communications, unpublished data, and manuscripts either "in preparation" or "submitted for publication" are unacceptable.

Drug Names

Generic names generally should be used. When proprietary brands are used in research, include the brand name in parentheses in the Methods section.
13th International Conference on Lyme Disease and Other Tick-Borne Disorders
Clinical Management & Research Update
March 25 and 26, 2000
Hartford Marriott
Farmington, CT

Full payment must accompany registration form.

Registrait #1 Please Print
Name: __
Title/Position: __________________________________
Institution: _____________________________________
Mailing Address: __________________________________
City: ___________________________ State: ______ Zip: __
Phone: Office ___________ Home _______________
Email: ___

Registrait #2 Please Print
Name: __
Title/Position: __________________________________
Institution: _____________________________________
Mailing Address: __________________________________
City: ___________________________ State: ______ Zip: __
Phone: Office ___________ Home _______________
Email: ___

Travel accommodations provided through Huntington Hay Travel 800-783-9783
Registration fee includes:
• Attendance at scientific sessions
• Book of proceedings
• Lunch and breaks on both days
• Evening receptions Friday and Saturday
Room rates: $79 single or double occupancy.
Rate applies March 23-27 for those who want a side trip to the Connecticut Lyme area.

Reserve your room now, as hotel space is limited.

MAIL TO: Lyme Disease Foundation, 1 Financial Plaza, Hartford, CT 06103

REGISTRATION: Written notice of cancellation must be received by February 15, 2000 for a refund.

Fees
____ $250 by February 15
____ $275 February 15 to March 21
____ $325 March 22 to on-site
____ $160 Poster Presenters (contact us for forms, Graduate Students with University validation letter.)
____ $60 Reception Only

____ Check Enclosed (make checks payable to “Lyme Disease Foundation”)

Credit Card Charge: ______ Mastercard ______ Visa ______ American Express
Card #: ___________________________ Exp. ______
Signature: ___________________________ Total Payment Enclosed: $ ______
PROGRAM AGENDA

Saturday, March 25, 2000
8:00 AM - 5:15 PM

• Keynote Speaker: Richard Blumenthal, Attorney General of Connecticut
• West Nile Virus: Epicenter to Epidemic and Expectations in 2000—T McNamara, DVM, Natl Wild Conserv/Bronx Zoo
• West Nile Virus in Connecticut—J Anderson, PhD, Conn Agri Exp Station
• Overview of Human Ehrlichioses and Rocky Mountain Spotted Fever in the US—C Paddock, MD, CDC
• Coinfections—L Magnarelli, PhD, Conn Agri Exp Station
• Lyme Disease in the South—J Oliver, PhD, Georgia Southern Univ
• Analysis of Southern Borrelia—A James, PhD, CDC
• Babesiosis—P Krause, MD, Univ Conn Sch Med
• Preliminary In Vitro and In Vivo Findings of Hyperbaric Oxygen Treatment in Experimental Borrelia burgdorferi Infection—C Pavia, PhD, NY Med Coll Sch Med, NYCOM Microbio Immun Lab NYIT
• Immunity Against Host-Adapted Borrelia/burgdorferi in the Rabbit—J Miller, PhD, UCLA Sch Med
• Immunologic Aspects of Vlse, a Borrelia/burgdorferi Antigenic Variation Protein—S Norris, PhD, Univ Tex Med Sch
• An Immunodominant Peptide of Borrelia/burgdorferi Vlse: Role in Diagnosis and Pathogenesis—M Philipp, PhD, Tulane Univ Sch Med
• Antibiotic Treatment of Lyme borreliosis: A Review of Results with Dogs—R Staubinger, DVM, PhD, Cornell Univ Sch Vet Med
• A Borrelia/burgdorferi Repetitive Antigen that Confers Protection Against Experimental Lyme Disease—R Skare, PhD, Texas A & M Univ Hlth Sci Ctr
• Use of Borreliacidal Assay in the Serodiagnosis of Lyme Disease—R Schell, PhD, Univ Wiscon Sch Med
• Lyme Neuroborreliosis: Role of PCR and Culture in the Diagnosis and in the Confirmation of Relapse after Antibiotic Treatment—J Oksi, MD, PhD, Turku Univ Ctrl Hosp, Finland
• Laboratory Testing Panel—R Tilton, PhD, BBI Clin Labs; J Shah, PhD, Igenex Labs; R Schell, PhD, Univ Wiscon Sch Med; M Golightly, MD, SUNY Stony Brook Sch Med; E Mordechai, PhD, Med Diagn Labs; S Schutzer, MD, UMDNJ

Sunday, March 26, 2000
8:00 AM - 5:00 PM

• Keynote Speaker: Willy Burgdorfer, National Institutes of Health
• Characterization of an Immune Evasion System in Lyme Disease Spirochetes—R Marconi, PhD, Med Coll Virg
• Environmental Regulation of Gene Expression in Borrelia/burgdorferi—S Samuels, PhD, Univ Mont Sch Med
• Matrix Metalloproteinases in Lyme Disease Pathogenesis—G Perides, MD, Beth Israel Deaconess Med Ctr
• Interleukin-10 Regulation During Acute Lyme Arthritis in Dogs—R Staubinger, DVM, PhD, Cornell Univ Sch Vet Med
• T-Cell Response—A Marques, MD, NIH
• Protection Against Tick-Transmitted Lyme Disease in Dogs Vaccinated with a Multiantigenic Vaccine—A Frey, PhD, NYU Sch Med
• OspA Vaccine Update, Including Serologic Results and Range of EM Rashes—D Parenti, MD, SmithKline Bio
• Atypical EM and Acute Lyme Disease—E Masters, MD, Reg Primary Care Phys
• Neurologic Lyme Disease in Children and Adolescents—D Pietrucha, MD, Cornell/NY Hosp, Jersey Shore Med Ctr
• Cognitive Deficits in Children with Chronic Lyme and the Public Health/Educational Implications—M Rissenberg, MD, Columbia Univ Sch Med
• Neurologic Lyme Disease in Adults—P Coyle, MD, SUNY Stony Brook Sch Med
• Pharmacologic Properties of Antibiotics and Their Relevance to Lyme Disease—S Donita, MD, Boston Univ Sch Med
• Treatment Roundtable—L Fein, MD, Morristown Mem Hosp; K Leignier, MD, Westchester Med Ctr; S Donita, MD, Boston Univ Sch Med; D Pietrucha, MD, Cornell/NY Hosp, Jersey Shore Med Ctr; J Burascano, MD, Southampton Hosp